当前位置:网站首页>关于lg(n!)的渐进紧确界

关于lg(n!)的渐进紧确界

2022-06-21 20:39:00 ash062

lg^{n!} = lg^{2} + lg^{3} + lg^{4} + lg^{5} + lg^{6} + lg^{7} +... + lg^{n}

假设n为2的幂,且  k = lg^{n}

缩小等式  lg^{n!}> lg^{2} + lg^{2} + lg^{4} + lg^{4} + lg^{4} + lg^{4} +... + lg^{n}

记  min = lg^{2} + lg^{2} + lg^{4} + lg^{4} + lg^{4} + lg^{4} +... + lg^{n} = \sum_{i = 1}^{k - 1}i\cdot 2^{i} + k

进一步处理有  min = 2min - min=(k - 1)2^{k} - \sum_{i = 1}^{k - 1}2^{i} + k=(k - 3)2^{k} + k + 2

因此  lg^{n!} = \Omega (nlg^{n})

类似放大等式  lg^{n!} < lg^{2} + lg^{4} + lg^{4} + lg^{8} + lg^{8} + lg^{8} + lg^{8} + ... + lg^{n}

记  max = lg^{2} + lg^{4} + lg^{4} + lg^{8} + lg^{8} + lg^{8} + lg^{8} +... + lg^{n} = \sum_{i = 1}^{k}i2^{i - 1}

有  max = 2max - max=k\cdot 2^{k} - \sum_{i = 1}^{k - 1}2^{i} = (k - 1)2^{k} + 2

因此  lg^{n!} = \bigcirc (nlg^{n})

综上  lg^{n!} = \Theta (nlg^{n})

原网站

版权声明
本文为[ash062]所创,转载请带上原文链接,感谢
https://blog.csdn.net/ash062/article/details/117706127