当前位置:网站首页>一元函数积分学_分部积分法
一元函数积分学_分部积分法
2022-07-25 19:36:00 【ximanni18】
思考一个问题 ![]()
分析: 可以利用两个函数乘积的求导法则,
设函数u(x) 和v(x)具有连续的导数, (uv)' = u'v + uv'
将上式变形 为:uv' = (uv)' - u'v.
两边都取积分,得:
∫ uv' dx = uv — ∫ u'vdx 。 这个等式就是分部积分公式。
一. 分部积分公式的定义
现在,我们可以得出, 要计算一个积分, 可以表达为求uv 减去另一个积分。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
注意: v'dx = dv, u'dx = du. 就是说d之后是跟着原函数,原来有v', 就转化为dv,
原来有u', 就转化为du.
所以分部积分公式 又可写成:
∫ udv = uv - ∫ vdu
现在对比看下:

二. 有了分部积分公式, 现在需要考虑哪个函数作为u, 哪个函数作为v?
先看一个例子


从上述两种方法,可以看出, 设定u, v的要求
(1) v要易求出
(2)∫vdu 要比 ∫udv易求。
三. 现在回到本文开头提到的题目
用分部积分法求解
解:令u=x, v' = eˣ,
∫xeˣdx = xeˣ - ∫eˣdx = xeˣ - eˣ + C
四. 有幂函数的积分的结论
1. 如果是幂函数乘以三角函数, 选u为幂函数, v'为三角函数
2. 如果是幂函数乘以指数函数, 选u为幂函数, v'为指数函数
这样设定,是为了降幂一次。
五. 三角函数与指数函数的积分
遇到三角函数乘以指数函数的积分, 设u为其中任意一种函数都可以。
六. 反三角函数的积分
对于反三角,有这样口诀: 易积分的设为v , 易求导的设为u.

解答此题, 要能记得 (arctanx)'= 1/ (1+x²)
结论: 在反三角函数的积分中, 选定 u为反三角函数,因为反三角的原函数很难求出。
七. 对数函数的积分
结论: 当被积函数里有对数函数时, 选u为对数函数。
例: 求积分 ∫x³ lnxdx.
解: 如果将v' 设为lnx, 能否解出原函数v 呢? 比较难!
所以我们将 u 设为lnx, v' = x³
原式

八. 总结以上各种函数的积分,
选 u 的优先顺序为:反对幂指三 或者 反对幂三指
边栏推荐
- Oracle database download, installation, use tutorial and problem summary
- [Detr for 3D object detection] detr3d: 3D object detection from multi view images via 3D-to-2D queries
- Is there a "fingerprint" in the structure of AAAI 2022 | Gan? Generating network structure from forged image traceability
- Common misunderstandings caused by a time reporting assistant of Blue Bridge Cup basic questions
- ERROR: role “admin“ cannot be dropped because some objects depend on itDETAIL:
- 微信小程序 28 热搜榜的完善①
- [wp]ctfshow-web introductory information collection
- 六轴传感器使用学习记录
- Small program completion work wechat campus maintenance application small program graduation design finished product (2) small program function
- Monitor MySQL based on MySQL exporter
猜你喜欢

Flutter tips: optimizing the buildcontext you use

网络数据包多层传输演示

Code sharing of social chat platform developed by dating website (III)

虹科分享|如何解决勒索软件安全漏洞

Network data request for wechat applet development

Skiing mobile H5 game source code download

Add a subtitle of 3D effect to the container

Improvement of wechat applet 28 hot search list ①

Why learn service grid istio

创意下拉多选js插件下载
随机推荐
[good book recommendation] - authoritative guide to Ethernet (2nd Edition)
【刷题记录】21. 合并两个有序链表
平衡二叉树
滑雪手机端H5小游戏源码下载
How to be a self disciplined person?
919. Complete binary tree inserter
Monitor MySQL based on MySQL exporter
Binary tree visualization
Hash undirected graph visualization
balanced binary tree
Grid layout frequently asked interview questions
[Detr for 3D object detection] detr3d: 3D object detection from multi view images via 3D-to-2D queries
Improvement of wechat applet 26 playing music page ②
阿姆利塔工程学院|用于情感分析的方面术语提取中优化采样的强化主动学习方法
Selenium runs slowly - speed up by setting selenium load policy
Heavy! The new book "deep learning in geometry" was released, which was jointly written by imperial Institute of technology /deepmind and other figures ml Daniel. The 160 page PDF expounds the basic p
C language learning diary 3 - realloc function
Bash does not add single quotes to your string
某公司网络设计与规划
Small program completion work wechat campus maintenance application small program graduation design finished product (2) small program function