当前位置:网站首页>[combinatorics] generating function (summation property)
[combinatorics] generating function (summation property)
2022-07-03 17:46:00 【Programmer community】
List of articles
- One 、 Summation property of generating function 1 ( Sum forward )
- Two 、 Summation property of generating function 2 ( Backward summation )
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
One 、 Summation property of generating function 1 ( Sum forward )
Summation property of generating function 1 :
b
n
=
∑
i
=
0
n
a
i
b_n = \sum\limits_{i=0}^{n}a_i
bn=i=0∑nai , be
B
(
x
)
=
A
(
x
)
1
−
x
B(x) = \cfrac{A(x)}{1-x}
B(x)=1−xA(x)
The sequence
a
n
a_n
an The generating function of is
A
(
x
)
A(x)
A(x) , The sequence
b
n
b_n
bn The generating function of is
B
(
x
)
B(x)
B(x) ,
The sequence
a
n
=
{
a
0
,
a
1
,
a
2
,
⋯
}
a_n = \{ a_0 , a_1, a_2 , \cdots \}
an={ a0,a1,a2,⋯} , The sequence
b
n
=
{
b
0
,
b
1
,
b
2
,
⋯
}
b_n = \{ b_0 , b_1, b_2 , \cdots \}
bn={ b0,b1,b2,⋯} ;
The sequence
a
n
a_n
an The generating function of
A
(
x
)
=
a
0
+
a
1
x
+
a
2
x
2
+
⋯
A(x) = a_0 + a_1x + a_2x^2 + \cdots
A(x)=a0+a1x+a2x2+⋯
The sequence
b
n
b_n
bn The generating function of
B
(
x
)
=
b
0
+
b
1
x
+
b
2
x
2
+
⋯
B(x) = b_0 + b_1x + b_2x^2 + \cdots
B(x)=b0+b1x+b2x2+⋯
b
n
b_n
bn The second in a series
n
n
n term , be equal to
a
n
a_n
an The first in a sequence
n
n
n Sum of items ;
deduction
b
n
b_n
bn Items of sequence :
b
0
=
a
0
b_0 = a_0
b0=a0
b
1
=
a
0
+
a
1
b_1 = a_0 + a_1
b1=a0+a1
b
2
=
a
0
+
a
1
+
a
2
b_2 = a_0 + a_1 + a_2
b2=a0+a1+a2
⋮
\vdots
⋮
b
n
=
a
0
+
a
1
+
a
2
+
⋯
+
a
n
b_n = a_0 + a_1 + a_2 + \cdots + a_n
bn=a0+a1+a2+⋯+an
Derive the terms of the generating function :
B
(
x
)
B(x)
B(x) Medium
x
0
x^0
x0 term ( Constant term ) :
b
0
=
a
0
b_0 \ \ \ = a_0
b0 =a0
B
(
x
)
B(x)
B(x) Medium
x
1
x^1
x1 term ( Constant term ) :
b
1
x
=
(
a
0
+
a
1
)
x
b_1x \ = (a_0 + a_1)x
b1x =(a0+a1)x
B
(
x
)
B(x)
B(x) Medium
x
2
x^2
x2 term ( Constant term ) :
b
2
x
2
=
(
a
0
+
a
1
+
a
2
)
x
2
b_2x^2 = (a_0 + a_1 + a_2)x^2
b2x2=(a0+a1+a2)x2
⋮
\vdots
⋮
B
(
x
)
B(x)
B(x) Medium
x
n
x^n
xn term ( Constant term ) :
b
n
x
n
=
(
a
0
+
a
1
+
a
2
+
⋯
+
a
n
)
x
n
b_nx^n = (a_0 + a_1 + a_2 + \cdots + a_n)x^n
bnxn=(a0+a1+a2+⋯+an)xn
Put the above
B
(
x
)
B(x)
B(x) Add the items in : The strategy of addition is vertical addition , As shown in the figure below :
The first
1
1
1 Column addition :
a
0
+
a
0
x
+
a
0
x
2
+
⋯
+
a
0
x
n
=
a
0
1
1
−
x
a_0 + a_0 x + a_0x^2 + \cdots + a_0x^n = a_0\cfrac{1}{1-x}
a0+a0x+a0x2+⋯+a0xn=a01−x1
The first
2
2
2 Column addition :
a
1
x
+
a
1
x
2
+
⋯
+
a
1
x
n
=
a
1
x
1
1
−
x
a_1 x + a_1x^2 + \cdots + a_1x^n = a_1x\cfrac{1}{1-x}
a1x+a1x2+⋯+a1xn=a1x1−x1
⋮
\vdots
⋮
The first
n
n
n Column addition :
a
n
x
n
=
a
n
x
n
1
1
−
x
a_nx^n = a_nx^n\cfrac{1}{1-x}
anxn=anxn1−x1
The resulting :
B
(
x
)
=
a
0
1
1
−
x
+
a
1
x
1
1
−
x
+
⋯
+
a
n
x
n
1
1
−
x
+
⋯
B(x) = a_0\cfrac{1}{1-x} + a_1x\cfrac{1}{1-x} + \cdots + a_nx^n\cfrac{1}{1-x} + \cdots
B(x)=a01−x1+a1x1−x1+⋯+anxn1−x1+⋯
Will be one of the
1
1
−
x
\cfrac{1}{1-x}
1−x1 extracted , You can get :
B
(
x
)
=
1
1
−
x
(
a
0
+
a
1
x
+
+
⋯
+
a
n
x
n
+
⋯
)
B(x) = \cfrac{1}{1-x} ( a_0 + a_1x + + \cdots + a_nx^n + \cdots )
B(x)=1−x1(a0+a1x++⋯+anxn+⋯)
B
(
x
)
=
1
1
−
x
A
(
x
)
B(x) = \cfrac{1}{1-x} A(x)
B(x)=1−x1A(x)
Two 、 Summation property of generating function 2 ( Backward summation )
Summation property of generating function 2 :
b
n
=
∑
i
=
n
∞
a
i
b_n = \sum\limits_{i=n}^{\infty}a_i
bn=i=n∑∞ai , also
A
(
1
)
=
∑
i
=
n
∞
a
i
A(1) =\sum\limits_{i=n}^{\infty}a_i
A(1)=i=n∑∞ai convergence , be
B
(
x
)
=
A
(
1
)
−
x
A
(
x
)
1
−
x
B(x) = \cfrac{A(1) - xA(x)}{1-x}
B(x)=1−xA(1)−xA(x)
边栏推荐
- 鸿蒙第三次培训
- Market demand survey and marketing strategy analysis report of global and Chinese pet milk substitutes 2022-2028
- VM11289 WAService. js:2 Do not have __ e handler in component:
- 1147_ Makefile learning_ Target files and dependent files in makefile
- 毕业总结
- 基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
- Inheritance of ES6 class
- Brief introduction to the core functions of automatic penetration testing tool
- [UE4] brush Arctic pack high quality Arctic terrain pack
- Research Report on competitive strategy Outlook Analysis and investment strategic planning of China's smart home equipment industry, 2022-2028
猜你喜欢
【RT-Thread】nxp rt10xx 设备驱动框架之--Pin搭建和使用
鸿蒙第四次培训
Qt调节Win屏幕亮度和声音大小
Market demand survey and marketing strategy analysis report of global and Chinese pet milk substitutes 2022-2028
Leetcode 669 pruning binary search tree -- recursive method and iterative method
PS screen printing brush 131, many illustrators have followed suit
Type conversion, variable
QT adjust win screen brightness and sound size
[combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th
1146_ SiCp learning notes_ exponentiation
随机推荐
A day's work list of an ordinary programmer
How to read the source code [debug and observe the source code]
Swm32 series Tutorial 4 port mapping and serial port application
聊聊支付流程的设计与实现逻辑
[combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th
QT adjust win screen brightness and sound size
【RT-Thread】nxp rt10xx 设备驱动框架之--Pin搭建和使用
UE4 official charging resources, with a total price of several thousand
PR second time
PS screen printing brush 131, many illustrators have followed suit
STM32H7 HAL库SPI DMA发送一直处于busy的解决办法
【RT-Thread】nxp rt10xx 设备驱动框架之--rtc搭建和使用
The gbase 8A database does not support the DB2 function value (column_name, 0) cluster syntax
Managing multiple selections with MVVM - managing multiple selections with MVVM
Loop through JSON object list
Detailed explanation of common network attacks
Website with JS doesn't work in IE9 until the Developer Tools is activated
What is the difference between cloud server and cloud virtual machine
Tensorboard quick start (pytoch uses tensorboard)
一入“远程”终不悔,几人欢喜几人愁。| 社区征文