当前位置:网站首页>Integral Topic Notes - Path Independent Conditions
Integral Topic Notes - Path Independent Conditions
2022-07-30 09:21:00 【The stars follow the moon】
一、The path-independent condition of the plane curve integral
定理(Four equivalent conditions for the curve integral of the second kind of plane curve to be independent of the path)
若 D D D is a plane simply connected region,且 P P P, Q Q Q 在 D D D 上连续且具有连续的一阶偏导数,Then the following four conditions are equivalent:

(1) 对 D D D any closed curve Γ \Gamma Γ The curve integral of the second kind is 0 0 0,即: ∮ Γ P d x + Q d y = 0 \oint_{\Gamma}Pdx+Qdy=0 ∮ΓPdx+Qdy=0 .
(2) 对任给 Γ A C B , Γ A D B ⊂ D \Gamma_{ACB}\ , \Gamma_{ADB}\subset D ΓACB ,ΓADB⊂D,则: ∮ Γ A C B P d x + Q d y = ∮ Γ A D B P d x + Q d y \oint_{\Gamma_{ACB}}Pdx+Qdy=\oint_{\Gamma_{ADB}}Pdx+Qdy ∮ΓACBPdx+Qdy=∮ΓADBPdx+Qdy .
即在 D D D Integral over a closed curve in Africa,It's only about the starting point and the ending point,与 D D D The path in is irrelevant.
(3) 存在 D D D 上的一个二元函数 μ ( x , y ) \mu(x,y) μ(x,y),使 d u = P d x + Q d y du=Pdx+Qdy du=Pdx+Qdy,即 ∂ u ∂ x = P \displaystyle{\frac{\partial u}{\partial x}=P }% ∂x∂u=P , ∂ u ∂ y = Q \displaystyle{\frac{\partial u}{\partial y}=Q }% ∂y∂u=Q .
(4) ∀ ( x , y ) ∈ D \forall\ (x,y)\in D ∀ (x,y)∈D,都有 ∂ Q ∂ x ≡ ∂ P ∂ y \displaystyle{\frac{\partial Q}{\partial x}\equiv\frac{\partial P}{\partial y} }% ∂x∂Q≡∂y∂P .
二、空间曲线积分与路径无关的条件
Four equivalent conditions for the curve integral of the second kind of space to be independent of paths
设 Ω \Omega Ω is the first-order partial derivative of a line simply connected in the space,Then the following four conditions are equivalent:
(1) 对 Ω \Omega Ω any closed curve in L L L The curve integral of the second kind on is 0 0 0,即 ∮ L P d x + Q d y + R d z = 0 \oint_{L}Pdx+Qdy+Rdz=0 ∮LPdx+Qdy+Rdz=0
(2) 对 Ω \Omega Ω any two non-closed curves in Γ A C B , Γ A D B \Gamma_{ACB} \ , \ \Gamma_{ADB} ΓACB , ΓADB,
有 ∫ Γ A C B P d x + Q d y + R d z = ∫ Γ A D B P d x + Q d y + R d z \displaystyle{ \int_{\Gamma_{ACB}}Pdx+Qdy+Rdz=\int_{\Gamma_{ADB}}Pdx+Qdy+Rdz }% ∫ΓACBPdx+Qdy+Rdz=∫ΓADBPdx+Qdy+Rdz ,
即 Ω \Omega Ω The curve integral of the second kind on the middle non-closed curve is only related to the starting point and the ending point,与 Ω \Omega Ω The path in is irrelevant.
(3) 存在 Ω \Omega Ω a ternary function on u ( x , y , z ) u(x,y,z) u(x,y,z) ,使 d u = P d x + Q d y + R d z du=Pdx+Qdy+Rdz du=Pdx+Qdy+Rdz,
即 ∂ u ∂ x = P , ∂ u ∂ y = Q , ∂ u ∂ z = R \displaystyle{ \frac{\partial u}{\partial x}=P\ , \ \frac{\partial u}{\partial y}=Q\ , \ \frac{\partial u}{\partial z}=R }% ∂x∂u=P , ∂y∂u=Q , ∂z∂u=R,称 u u u 是 P d x + Q d y + R d z Pdx+Qdy+Rdz Pdx+Qdy+Rdz 的一个原函数.
(4) ∂ Q ∂ x ≡ ∂ P ∂ y , ∂ R ∂ y ≡ ∂ Q ∂ z , ∂ P ∂ z ≡ ∂ R ∂ x \displaystyle{ \frac{\partial Q}{\partial x}\equiv\frac{\partial P}{\partial y}\ , \ \frac{\partial R}{\partial y}\equiv\frac{\partial Q}{\partial z}\ , \ \frac{\partial P}{\partial z}\equiv\frac{\partial R}{\partial x} }% ∂x∂Q≡∂y∂P , ∂y∂R≡∂z∂Q , ∂z∂P≡∂x∂R,即 r o t A ⃗ ≡ 0 , ( x , y , z ) ∈ Ω \mathrm{rot}\vec{A}\equiv0\ , \ (x,y,z)\in\Omega rotA≡0 , (x,y,z)∈Ω .
边栏推荐
- 【三子棋】——玩家VS电脑(C语言实现)
- [Fun BLDC series with zero basics] Taking GD32F30x as an example, the timer related functions are explained in detail
- 硬件工程师
- 如何使用 Jmeter 进行抢购、秒杀等场景下,进行高并发?
- 研发人员的悲剧——“庞氏骗局”
- 【Flask框架①】——Flask介绍
- test111
- ACL 2022 | Introduce angular margin to construct comparative learning objectives and enhance text semantic discrimination ability
- What convenience does the RFID fixed asset inventory system bring to enterprises?
- js柯里化
猜你喜欢

C语言经典练习题(3)——“汉诺塔(Hanoi)“

Leetcode - 990: equations of satisfiability

Golang DES 加解密如何实现?

TreeSet解析

HCIP --- MPLS VPN实验
![ES报错处理-mapper [xx.xx] of different type, current_type [text], merged_type [keyword]](/img/48/064348ec4d7c2a4fa6ffe7a4778ced.png)
ES报错处理-mapper [xx.xx] of different type, current_type [text], merged_type [keyword]

【愚公系列】2022年07月 Go教学课程 021-Go容器之切片操作

立创EDA——PCB的走线(五)

Activating data potential Amazon cloud technology reshapes cloud storage "family bucket"

SQL window function
随机推荐
如何避免CMDB沦为数据孤岛?
JS中如何阻止事件冒泡和默认行为
Scala
One article to understand twenty kinds of switching power supply topologies
ACL 2022 | Introduce angular margin to construct comparative learning objectives and enhance text semantic discrimination ability
【HMS core】【FAQ】HMS Toolkit典型问题合集1
hicp第六天
SwiftUI SQLite 教程之 构建App本地数据库实现创建、读取、更新和删除(教程含完成项目源码)
jdbc ResultSetMetaData获取tableName问题
Windows 下安装 MySQL
leetcode经典问题——11.盛水最多的容器
DDR、GDDR、QDR的区别
立创EDA——PCB的走线(五)
hcip 第14天学习笔记
test111
C language classic practice questions (3) - "Hanoi Tower (Hanoi)"
最远点采样 — D-FPS与F-FPS
【无标题】
Apache DolphinScheduler新一代分布式工作流任务调度平台实战-上
FPGA基础协议二:I2C读写E²PROM