当前位置:网站首页>Integral Topic Notes - Path Independent Conditions
Integral Topic Notes - Path Independent Conditions
2022-07-30 09:21:00 【The stars follow the moon】
一、The path-independent condition of the plane curve integral
定理(Four equivalent conditions for the curve integral of the second kind of plane curve to be independent of the path)
若 D D D is a plane simply connected region,且 P P P, Q Q Q 在 D D D 上连续且具有连续的一阶偏导数,Then the following four conditions are equivalent:

(1) 对 D D D any closed curve Γ \Gamma Γ The curve integral of the second kind is 0 0 0,即: ∮ Γ P d x + Q d y = 0 \oint_{\Gamma}Pdx+Qdy=0 ∮ΓPdx+Qdy=0 .
(2) 对任给 Γ A C B , Γ A D B ⊂ D \Gamma_{ACB}\ , \Gamma_{ADB}\subset D ΓACB ,ΓADB⊂D,则: ∮ Γ A C B P d x + Q d y = ∮ Γ A D B P d x + Q d y \oint_{\Gamma_{ACB}}Pdx+Qdy=\oint_{\Gamma_{ADB}}Pdx+Qdy ∮ΓACBPdx+Qdy=∮ΓADBPdx+Qdy .
即在 D D D Integral over a closed curve in Africa,It's only about the starting point and the ending point,与 D D D The path in is irrelevant.
(3) 存在 D D D 上的一个二元函数 μ ( x , y ) \mu(x,y) μ(x,y),使 d u = P d x + Q d y du=Pdx+Qdy du=Pdx+Qdy,即 ∂ u ∂ x = P \displaystyle{\frac{\partial u}{\partial x}=P }% ∂x∂u=P , ∂ u ∂ y = Q \displaystyle{\frac{\partial u}{\partial y}=Q }% ∂y∂u=Q .
(4) ∀ ( x , y ) ∈ D \forall\ (x,y)\in D ∀ (x,y)∈D,都有 ∂ Q ∂ x ≡ ∂ P ∂ y \displaystyle{\frac{\partial Q}{\partial x}\equiv\frac{\partial P}{\partial y} }% ∂x∂Q≡∂y∂P .
二、空间曲线积分与路径无关的条件
Four equivalent conditions for the curve integral of the second kind of space to be independent of paths
设 Ω \Omega Ω is the first-order partial derivative of a line simply connected in the space,Then the following four conditions are equivalent:
(1) 对 Ω \Omega Ω any closed curve in L L L The curve integral of the second kind on is 0 0 0,即 ∮ L P d x + Q d y + R d z = 0 \oint_{L}Pdx+Qdy+Rdz=0 ∮LPdx+Qdy+Rdz=0
(2) 对 Ω \Omega Ω any two non-closed curves in Γ A C B , Γ A D B \Gamma_{ACB} \ , \ \Gamma_{ADB} ΓACB , ΓADB,
有 ∫ Γ A C B P d x + Q d y + R d z = ∫ Γ A D B P d x + Q d y + R d z \displaystyle{ \int_{\Gamma_{ACB}}Pdx+Qdy+Rdz=\int_{\Gamma_{ADB}}Pdx+Qdy+Rdz }% ∫ΓACBPdx+Qdy+Rdz=∫ΓADBPdx+Qdy+Rdz ,
即 Ω \Omega Ω The curve integral of the second kind on the middle non-closed curve is only related to the starting point and the ending point,与 Ω \Omega Ω The path in is irrelevant.
(3) 存在 Ω \Omega Ω a ternary function on u ( x , y , z ) u(x,y,z) u(x,y,z) ,使 d u = P d x + Q d y + R d z du=Pdx+Qdy+Rdz du=Pdx+Qdy+Rdz,
即 ∂ u ∂ x = P , ∂ u ∂ y = Q , ∂ u ∂ z = R \displaystyle{ \frac{\partial u}{\partial x}=P\ , \ \frac{\partial u}{\partial y}=Q\ , \ \frac{\partial u}{\partial z}=R }% ∂x∂u=P , ∂y∂u=Q , ∂z∂u=R,称 u u u 是 P d x + Q d y + R d z Pdx+Qdy+Rdz Pdx+Qdy+Rdz 的一个原函数.
(4) ∂ Q ∂ x ≡ ∂ P ∂ y , ∂ R ∂ y ≡ ∂ Q ∂ z , ∂ P ∂ z ≡ ∂ R ∂ x \displaystyle{ \frac{\partial Q}{\partial x}\equiv\frac{\partial P}{\partial y}\ , \ \frac{\partial R}{\partial y}\equiv\frac{\partial Q}{\partial z}\ , \ \frac{\partial P}{\partial z}\equiv\frac{\partial R}{\partial x} }% ∂x∂Q≡∂y∂P , ∂y∂R≡∂z∂Q , ∂z∂P≡∂x∂R,即 r o t A ⃗ ≡ 0 , ( x , y , z ) ∈ Ω \mathrm{rot}\vec{A}\equiv0\ , \ (x,y,z)\in\Omega rotA≡0 , (x,y,z)∈Ω .
边栏推荐
猜你喜欢
随机推荐
积分专题笔记-积分的定义
How to implement Golang DES encryption and decryption?
SQL window function
Network/Information Security Top Journal and Related Journals Conference
新手必备!最全电路基础知识讲解
【SQL server速成之路】——身份验证及建立和管理用户账户
【愚公系列】2022年07月 Go教学课程 021-Go容器之切片操作
Scala
hcip第八天
Detailed explanation of 4D words: C language three-point chess advanced + N-piece chess recursive dynamic judgment of winning or losing
hicp第六天
【WeChat Mini Program】Page Events
Apache DolphinScheduler新一代分布式工作流任务调度平台实战-上
都说FPGA高端,它到底能干啥?
Windows 下安装 MySQL
One article to understand twenty kinds of switching power supply topologies
C language classic practice questions (3) - "Hanoi Tower (Hanoi)"
Flutter 环境变量配置和flutter doctor中的错误解决
Dynamic Lead Time Promising
电源完整性的去耦和层间耦合电容









