当前位置:网站首页>Partition data 1
Partition data 1
2022-07-24 10:33:00 【nb1232】
import math
import numpy as np
import torch
from torch import nn
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
from torch.utils import data
from torchvision import transforms
from torch.utils.data import Dataset
import torchvision
train_data=datasets.CIFAR10(root="../data", train=True, transform=transforms.ToTensor(), download=True)
test_data=datasets.CIFAR10(root="../data", train=False, transform=transforms.ToTensor(), download=True)
t0=[ i for i, x in enumerate(train_data.targets) if x == 0]
t1=[ i for i, x in enumerate(train_data.targets) if x == 1]
t2=[ i for i, x in enumerate(train_data.targets) if x == 2]
t3=[ i for i, x in enumerate(train_data.targets) if x == 3]
t4=[ i for i, x in enumerate(train_data.targets) if x == 4]
t5=[ i for i, x in enumerate(train_data.targets) if x == 5]
t6=[ i for i, x in enumerate(train_data.targets) if x == 6]
t7=[ i for i, x in enumerate(train_data.targets) if x == 7]
t8=[ i for i, x in enumerate(train_data.targets) if x == 8]
t9=[ i for i, x in enumerate(train_data.targets) if x == 9]
label0=[]
for i in t0:
label0.append(train_data.targets[i])
label1=[]
for i in t1:
label1.append(train_data.targets[i])
label2=[]
for i in t2:
label2.append(train_data.targets[i])
label3=[]
for i in t3:
label3.append(train_data.targets[i])
label4=[]
for i in t4:
label4.append(train_data.targets[i])
label5=[]
for i in t5:
label5.append(train_data.targets[i])
label6=[]
for i in t6:
label6.append(train_data.targets[i])
label7=[]
for i in t7:
label7.append(train_data.targets[i])
label8=[]
for i in t8:
label8.append(train_data.targets[i])
label9=[]
for i in t9:
label9.append(train_data.targets[i])
data0=np.array([])
for i in t0:
data0=np.append(data0,train_data.data[i])
data1=np.array([])
for i in t1:
data1=np.append(data1,train_data.data[i])
data2=np.array([])
for i in t2:
data2=np.append(data2,train_data.data[i])
data3=np.array([])
for i in t3:
data3=np.append(data3,train_data.data[i])
data4=np.array([])
for i in t4:
data4=np.append(data4,train_data.data[i])
data5=np.array([])
for i in t5:
data5=np.append(data5,train_data.data[i])
data6=np.array([])
for i in t6:
data6=np.append(data6,train_data.data[i])
data7=np.array([])
for i in t7:
data7=np.append(data7,train_data.data[i])
data8=np.array([])
for i in t8:
data8=np.append(data8,train_data.data[i])
data9=np.array([])
for i in t9:
data9=np.append(data9,train_data.data[i])
data0=data0.reshape(len(label0),32,32,3)
data1=data1.reshape(len(label1),32,32,3)
data2=data2.reshape(len(label2),32,32,3)
data3=data3.reshape(len(label3),32,32,3)
data4=data4.reshape(len(label4),32,32,3)
data5=data5.reshape(len(label5),32,32,3)
data6=data6.reshape(len(label6),32,32,3)
data7=data7.reshape(len(label7),32,32,3)
data8=data8.reshape(len(label8),32,32,3)
data9=data9.reshape(len(label9),32,32,3)
class DatasetXY(Dataset):
def __init__(self, x, y):
self._x = x
self._y = y
self._len = len(x)
def __getitem__(self, item): # The value returned in each cycle
return self._x[item], self._y[item]
def __len__(self):
return self._len
dataset0= DatasetXY(data0,label0)
dataset1= DatasetXY(data1,label1)
dataset2= DatasetXY(data2,label2)
dataset3= DatasetXY(data3,label3)
dataset4= DatasetXY(data4,label4)
dataset5= DatasetXY(data5,label5)
dataset6= DatasetXY(data6,label6)
dataset7= DatasetXY(data7,label7)
dataset8= DatasetXY(data8,label8)
dataset9= DatasetXY(data9,label9)
train1_iter=data.DataLoader(dataset0,batch_size=32,num_workers=0)
边栏推荐
- NiO knowledge points
- CMS vulnerability recurrence - foreground arbitrary user password modification vulnerability
- A ten thousand word blog post takes you into the pit. Reptiles are a dead end [ten thousand word pictures]
- Ribbon's loadbalancerclient, zoneawareloadbalancer and zoneavoidancerule are three musketeers by default
- 【剑指 Offer II 115. 重建序列】
- Web Security Foundation - file upload (file upload bypass)
- Uniapp uses PWA
- Common Unicode encoding range
- String__
- PC博物馆(2) 1972年 HP-9830A
猜你喜欢

The paper of gaojingjian center was selected into the ACL 2022 of the international summit to further expand the privacy computing capacity of Chang'an chain

Differential restraint system -- 1 and 2 -- May 27, 2022

MySQL - lock

Segment tree--

Analysis of Kube proxy IPVS mode

Constant pointer, pointer constant

N叉树、page_size、数据库严格模式修改、数据库中delect和drop的不同

MySQL - 索引的隐藏和删除

Figure model 2-2022-5-13

ZOJ 2770 differential restraint system -- 2 -- May 20, 2022
随机推荐
Erlang学习02
Arduino + AD9833 waveform generator
Create a vertical seekbar from scratch
ZOJ 2770 differential restraint system -- 2 -- May 20, 2022
分布式事务处理方案大 PK!
Notes on using setupproxy
Sentinel 三种流控效果
Figure model 2-2022-5-13
2022, enterprise informatization construction based on Unified Process Platform refers to thubierv0.1
Binary original code, inverse code, complement code
Scan line, weight segment tree
zoj1137+作业1--2022年5月28日
MySQL - 多列索引
MySQL - lock
Build a live broadcast platform based on webrtc
PC博物馆(2) 1972年 HP-9830A
MySQL - 删除数据库表中的数据
Gaode map
Domain Driven practice summary (basic theory summary and analysis + Architecture Analysis and code design + specific application design analysis V) [easy to understand]
Design of dual machine hot standby scheme