当前位置:网站首页>20211104 why is the trace of a matrix equal to the sum of eigenvalues, and why is the determinant of a matrix equal to the product of eigenvalues
20211104 why is the trace of a matrix equal to the sum of eigenvalues, and why is the determinant of a matrix equal to the product of eigenvalues
2022-06-13 09:03:00 【What's my name】
Why is the trace of a matrix equal to the sum of eigenvalues
seek n n n Order matrix A = ( a i j ) n × n {A}=\left(a_{i j}\right)_{n \times n} A=(aij)n×n The eigenvalues of the
det ( λ I − A ) = ∣ λ − a 11 − a 12 … − a 1 n − a 21 λ − a 22 … − a 2 n … … … … − a n 1 − a n 2 … λ − a n n ∣ \operatorname{det}(\lambda I-A)=\left|\begin{array}{cccc} \lambda-a_{11} & -a_{12} & \ldots & -a_{1 n} \\ -a_{21} & \lambda-a_{22} & \ldots & -a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ -a_{n 1} & -a_{n 2} & \ldots & \lambda-a_{n n} \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−a11−a21…−an1−a12λ−a22…−an2…………−a1n−a2n…λ−ann∣∣∣∣∣∣∣∣
The characteristic polynomial can be obtained from the expansion rule of determinant
φ ( λ ) = det ( λ I − A ) = λ n − ( a 11 + a 22 + ⋯ + a m ) λ n − 1 + ⋯ + ( − 1 ) n det A \begin{aligned} \varphi(\lambda)& =\operatorname{det}(\lambda {I}-{A})\\ & =\lambda^{n}-\left(a_{11}+a_{22}+\cdots+a_{m}\right) \lambda^{n-1}+ & \cdots+(-1)^{n} \operatorname{det} \boldsymbol{A} \end{aligned} φ(λ)=det(λI−A)=λn−(a11+a22+⋯+am)λn−1+⋯+(−1)ndetA
meanwhile , det ( λ I − A ) \operatorname{det}(\lambda I-A) det(λI−A) Yes n \mathrm{n} n A root , They are n \mathrm{n} n Eigenvalues , in other words
det ( λ I − A ) = ( λ − λ 1 ) ( λ − λ 2 ) … ( λ − λ n ) \operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right) det(λI−A)=(λ−λ1)(λ−λ2)…(λ−λn)
that ,
λ 1 λ 2 ⋯ λ n = det A \lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det} \boldsymbol{A} λ1λ2⋯λn=detA
tr A = ∑ i = 1 n a i u \operatorname{tr} \boldsymbol{A}=\sum_{i=1}^{n} a_{i u} trA=i=1∑naiu
Reference resources :
[1] https://www.zhihu.com/question/267405336
[2] 《 Matrix theory 》 Cheng Yunpeng Zhang Kaiyuan
边栏推荐
- Neo4j环境搭建
- Gbase 8A disk problems and Solutions
- Mttr/mttf/mtbf diagram
- 20211020 段院士全驱系统
- Can I open an account for the reverse repurchase of treasury bonds? Can I directly open the security of securities companies on the app for the reverse repurchase of treasury bonds? How can I open an
- A very detailed blog about the implementation of bilinear interpolation by opencv
- Two good kids
- Summary of the first retrospective meeting
- 20211108 微分跟踪器
- Completely uninstall PostgreSQL under Linux
猜你喜欢
类的加载概述
Drill down to protobuf - Introduction
[network security] webshell empowerment of new thinking of SQL injection
[security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation
教程篇(5.0) 02. 管理 * FortiEDR * Fortinet 网络安全专家 NSE 5
Some websites of QT (software download, help documents, etc.)
【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro
How does jupyter notebook directly output the values of multiple variables after running?
Simulink如何添加模块到Library Browser
Use of grep
随机推荐
20211004 矩阵的子空间
Gbase 8A v95 vs v86 compression strategy analogy
Uni app essay
An error CV2 is reported when the picture is converted to grayscale cvtColor(img, cv2.COLOR_BGR2GRAY)
redis
【安全】零基礎如何從0到1逆襲成為安全工程師
Knowledge points related to system architecture 2
Mapbox loads nationwide and provincial range, displaying multi-color animation points, migration lines, 3D histogram, etc
简单实现数据库链接池
an error occurred while trying to rename a file in the destination directory code 5
20211028 Stabilizability
ERP outlet
Installation of sonarqube code quality management platform (to be continued)
Calculation method of paging
20211108 能观能控,可稳可测
ES6 module import / export summary
Four kinds of hooks in deep learning
20211006 linear transformation
output. Interpretation of topk() function
Mttr/mttf/mtbf diagram