当前位置:网站首页>20211104 why is the trace of a matrix equal to the sum of eigenvalues, and why is the determinant of a matrix equal to the product of eigenvalues
20211104 why is the trace of a matrix equal to the sum of eigenvalues, and why is the determinant of a matrix equal to the product of eigenvalues
2022-06-13 09:03:00 【What's my name】
Why is the trace of a matrix equal to the sum of eigenvalues
seek n n n Order matrix A = ( a i j ) n × n {A}=\left(a_{i j}\right)_{n \times n} A=(aij)n×n The eigenvalues of the
det ( λ I − A ) = ∣ λ − a 11 − a 12 … − a 1 n − a 21 λ − a 22 … − a 2 n … … … … − a n 1 − a n 2 … λ − a n n ∣ \operatorname{det}(\lambda I-A)=\left|\begin{array}{cccc} \lambda-a_{11} & -a_{12} & \ldots & -a_{1 n} \\ -a_{21} & \lambda-a_{22} & \ldots & -a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ -a_{n 1} & -a_{n 2} & \ldots & \lambda-a_{n n} \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−a11−a21…−an1−a12λ−a22…−an2…………−a1n−a2n…λ−ann∣∣∣∣∣∣∣∣
The characteristic polynomial can be obtained from the expansion rule of determinant
φ ( λ ) = det ( λ I − A ) = λ n − ( a 11 + a 22 + ⋯ + a m ) λ n − 1 + ⋯ + ( − 1 ) n det A \begin{aligned} \varphi(\lambda)& =\operatorname{det}(\lambda {I}-{A})\\ & =\lambda^{n}-\left(a_{11}+a_{22}+\cdots+a_{m}\right) \lambda^{n-1}+ & \cdots+(-1)^{n} \operatorname{det} \boldsymbol{A} \end{aligned} φ(λ)=det(λI−A)=λn−(a11+a22+⋯+am)λn−1+⋯+(−1)ndetA
meanwhile , det ( λ I − A ) \operatorname{det}(\lambda I-A) det(λI−A) Yes n \mathrm{n} n A root , They are n \mathrm{n} n Eigenvalues , in other words
det ( λ I − A ) = ( λ − λ 1 ) ( λ − λ 2 ) … ( λ − λ n ) \operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right) det(λI−A)=(λ−λ1)(λ−λ2)…(λ−λn)
that ,
λ 1 λ 2 ⋯ λ n = det A \lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det} \boldsymbol{A} λ1λ2⋯λn=detA
tr A = ∑ i = 1 n a i u \operatorname{tr} \boldsymbol{A}=\sum_{i=1}^{n} a_{i u} trA=i=1∑naiu
Reference resources :
[1] https://www.zhihu.com/question/267405336
[2] 《 Matrix theory 》 Cheng Yunpeng Zhang Kaiyuan
边栏推荐
- QML compilation specification
- Brief description of port, domain communication port and domain service
- Uni app essay
- 14. class initialization, default constructor, =default
- 20211028 Stabilizability
- 20211020 段院士全驱系统
- Cmake Learning Series I
- 教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5
- Cesium view switching, locating, reading files, building data sources, entity control, model control, etc
- Basic use of cesium, including loading images, terrain, models, vector data, etc
猜你喜欢

How to become a white hat hacker? I suggest you start from these stages

【网络安全渗透】如果你还不懂CSRF?这一篇让你彻底掌握

CentOS installing MySQL and setting up remote access

What exactly is Huawei cloud desktop saying when it says "smooth"?

Knowledge points related to system architecture 3

【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro

Use of grep

Diversified tables through TL table row consolidation

How does jupyter notebook directly output the values of multiple variables after running?

Cesium achieves sunny, rainy, foggy, snowy and other effects
随机推荐
[network security] webshell empowerment of new thinking of SQL injection
Mapbox usage, including drawing, loading, modifying, deleting points and faces, displaying pop ups, etc
How many TCP connections can a machine create at most?
Vscode plug in
Screenshot of cesium implementation scenario
教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5
20211108 能观能控,可稳可测
基于微信小程序的图书馆管理系统.rar(论文+源码)
12. constructor explanation, explicit, initialization list
20211006 integral, differential and projection belong to linear transformation
Pytorch model tuning - only some layers of the pre training model are loaded
20211108 微分跟踪器
Three indexes reflecting system reliability in performance test: MTTF, MTTR and MTBF
torch. How to calculate addmm (m, mat1, mat2)
Knowledge points related to system architecture 3
How to become a white hat hacker? I suggest you start from these stages
Collection of garbled code problems in idea development environment
Neo4j environment construction
20211115 矩阵对角化的充要条件;满秩矩阵不一定有n个线性无关的特征向量;对称矩阵一定可以对角化
[QNX hypervisor 2.2 user manual] 4.5 building a guest