当前位置:网站首页>20211104 why is the trace of a matrix equal to the sum of eigenvalues, and why is the determinant of a matrix equal to the product of eigenvalues
20211104 why is the trace of a matrix equal to the sum of eigenvalues, and why is the determinant of a matrix equal to the product of eigenvalues
2022-06-13 09:03:00 【What's my name】
Why is the trace of a matrix equal to the sum of eigenvalues
seek n n n Order matrix A = ( a i j ) n × n {A}=\left(a_{i j}\right)_{n \times n} A=(aij)n×n The eigenvalues of the
det ( λ I − A ) = ∣ λ − a 11 − a 12 … − a 1 n − a 21 λ − a 22 … − a 2 n … … … … − a n 1 − a n 2 … λ − a n n ∣ \operatorname{det}(\lambda I-A)=\left|\begin{array}{cccc} \lambda-a_{11} & -a_{12} & \ldots & -a_{1 n} \\ -a_{21} & \lambda-a_{22} & \ldots & -a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ -a_{n 1} & -a_{n 2} & \ldots & \lambda-a_{n n} \end{array}\right| det(λI−A)=∣∣∣∣∣∣∣∣λ−a11−a21…−an1−a12λ−a22…−an2…………−a1n−a2n…λ−ann∣∣∣∣∣∣∣∣
The characteristic polynomial can be obtained from the expansion rule of determinant
φ ( λ ) = det ( λ I − A ) = λ n − ( a 11 + a 22 + ⋯ + a m ) λ n − 1 + ⋯ + ( − 1 ) n det A \begin{aligned} \varphi(\lambda)& =\operatorname{det}(\lambda {I}-{A})\\ & =\lambda^{n}-\left(a_{11}+a_{22}+\cdots+a_{m}\right) \lambda^{n-1}+ & \cdots+(-1)^{n} \operatorname{det} \boldsymbol{A} \end{aligned} φ(λ)=det(λI−A)=λn−(a11+a22+⋯+am)λn−1+⋯+(−1)ndetA
meanwhile , det ( λ I − A ) \operatorname{det}(\lambda I-A) det(λI−A) Yes n \mathrm{n} n A root , They are n \mathrm{n} n Eigenvalues , in other words
det ( λ I − A ) = ( λ − λ 1 ) ( λ − λ 2 ) … ( λ − λ n ) \operatorname{det}(\lambda I-A)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right) det(λI−A)=(λ−λ1)(λ−λ2)…(λ−λn)
that ,
λ 1 λ 2 ⋯ λ n = det A \lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det} \boldsymbol{A} λ1λ2⋯λn=detA
tr A = ∑ i = 1 n a i u \operatorname{tr} \boldsymbol{A}=\sum_{i=1}^{n} a_{i u} trA=i=1∑naiu
Reference resources :
[1] https://www.zhihu.com/question/267405336
[2] 《 Matrix theory 》 Cheng Yunpeng Zhang Kaiyuan
边栏推荐
- an error occurred while trying to rename a file in the destination directory code 5
- 「解读」华为云桌面说“流畅”的时候,究竟在说什么?
- GBase 8a磁盤問題及處理
- Library management system based on wechat applet Rar (thesis + source code)
- output. Interpretation of topk() function
- QML compilation specification
- Web page H5 wechat sharing
- Gbase 8A v95 vs v86 compression strategy analogy
- Diversified tables through TL table row consolidation
- 20211028 Stabilizability
猜你喜欢

Tutorial (5.0) 01 Product introduction and installation * fortiedr * Fortinet network security expert NSE 5

Simulink的Variant Model和Variant Subsystem用法

Detailed explanation of C language callback function

类的加载概述

Neo4j - CQL使用

What exactly is Huawei cloud desktop saying when it says "smooth"?

基于微信小程序的图书馆管理系统.rar(论文+源码)

System analysis - detailed description

Mttr/mttf/mtbf diagram

Library management system based on wechat applet Rar (thesis + source code)
随机推荐
Pytorch same structure different parameter name model loading weight
【QNX Hypervisor 2.2 用户手册】4.5 构建Guest
Brief description of port, domain communication port and domain service
Screenshot of cesium implementation scenario
20211005 Hermite matrix and some properties
Tutorial (5.0) 02 Management * fortiedr * Fortinet network security expert NSE 5
final 原理
教程篇(5.0) 01. 产品简介及安装 * FortiEDR * Fortinet 网络安全专家 NSE 5
[QNX hypervisor 2.2 user manual] 4.5 building a guest
Is it safe to open an account online? Can a novice open an account?
GBase 常见网络问题及排查方法
Knowledge points related to system architecture 2
类的加载概述
【网络安全】SQL注入新思维之webshell提权
Message Oriented Middleware
教程篇(5.0) 02. 管理 * FortiEDR * Fortinet 网络安全专家 NSE 5
Void* pointer
pytorch相同结构不同参数名模型加载权重
An error CV2 is reported when the picture is converted to grayscale cvtColor(img, cv2.COLOR_BGR2GRAY)
Three indexes reflecting system reliability in performance test: MTTF, MTTR and MTBF