当前位置:网站首页>deep learning statistical arbitrage
deep learning statistical arbitrage
2022-06-27 10:54:00 【SyncStudy】
deep learning statistical arbitrage
- empirial
- stanford
- Jorge guijarro
- markus
Motivation
- Pair trading
- GM and Ford
- Assumption
- prices are on average similar
- Exploit temporal price different between similiar seests
Three components of statisical arbitarge
- contrict protolio
- trading signal
Foundational problem
Research question
- arbitrage portolios
- arbitarge signals
Contributions
- Novel conceptual framework
- Unified framework
- To compare different statistical arbitrage methods
- Portolio generation
- signal extraction
- allocation decision
- Study each component and compare with conventional models
Novel methods
- statistical factor
- Convolution neural network
Empirical
- substantially outperforms
- sharpe ratios
Parametric models
- PCA
- cOINTEGRATION
- STOCHASTIC CONTROL
- SIMPLE PAIRS TRADING
- INTRACTABLE PARAMETRIC MODELS WITH ml
Model
R n , t = β n , t − 1 T F t + ε R_{n,t}=\beta^T_{n,t-1}F_t+\varepsilon Rn,t=βn,t−1TFt+ε
x : = ε t L : = ( ε n , t − L ) x:=\varepsilon_t^L:=(\varepsilon_{n,t-L}) x:=εtL:=(εn,t−L)
w t − 1 ε = w ε ( θ ( ε t − 1 L ) ) w_{t-1}^\varepsilon=w^\varepsilon(\theta(\varepsilon_{t-1}^L)) wt−1ε=wε(θ(εt−1L))
w t − 1 R = w_{t-1}^R=\frac{}{} wt−1R=
d X t = κ ( μ − X t ) dX_t = \kappa(\mu-X_t) dXt=κ(μ−Xt)
θ i = ∑ j = 1 L W j f i l t e r X j \theta_i=\sum_{j=1}^{L}W_j^{filter}X_j θi=j=1∑LWjfilterXj
W W^{} W
θ C N N + T r a n s ( X ) \theta^{CNN+Trans}(X) θCNN+Trans(X)
y I ( 0 ) = ∑ m = 1 D s i z e W m l o c a l X y_I^{(0)}=\sum_{m=1}^{D_{size}}W_m^{local}X yI(0)=m=1∑DsizeWmlocalX
h i = ∑ I = 1 L α i , I x I ~ h_i=\sum_{I=1}^{L}\alpha_i,I\widetilde{x_I} hi=I=1∑Lαi,IxI
F a m a − F r e n c h F a c t o r Fama-French Factor Fama−FrenchFactor
C N N + T r a n s f o r m CNN+Transform CNN+Transform
α , t α , R 2 \alpha, t_\alpha,R^2 α,tα,R2
t μ t_\mu tμ
w t − 1 = w t − 1 w_{t-1}=\frac{w_{t-1}^{}}{} wt−1=wt−1
L = 60 L=60 L=60
F F N FFN FFN
< 1 % <1\% <1%
T t r a i n = 4 T_{train}=4 Ttrain=4
f a s t − r e v e r s a l fast-reversal fast−reversal
- fast reversal
- early momemtum
- low frequency downturn
- low frequency momentum
- smooth trends or local curvature
- most recent 14 days get more attention for trading decision
- more complex than simple reversal patterns
c o s t ( w t − 1 R , w t − 2 R ) = 0.0005 ∣ ∣ w t − 1 cost(w_{t-1}^R, w_{t-2}^R)=0.0005||w_{t-1} cost(wt−1R,wt−2R)=0.0005∣∣wt−1
B = 7 B=7 B=7
S R = 1 SR=1 SR=1
a r b i t r a g e arbitrage arbitrage
m e a n mean mean
Δ P = P 2 − P 1 \Delta P=P_2-P_1 ΔP=P2−P1
V = ∑ V=\sum V=∑
V = ∣ β 0 + β 1 Δ P ∣ V=|\beta_0+\beta_1\Delta P| V=∣β0+β1ΔP∣
β 0 = c ( μ A − μ B ) \beta_0=c(\mu_A-\mu_B) β0=c(μA−μB)
β 1 = f ( r i s k ) \beta_1=f(risk) β1=f(risk)
E ( V ) = E [ ∣ β 0 + β 1 σ P Z ∣ ] E(V)=E[|\beta_0+\beta_{1\sigma P}Z|] E(V)=E[∣β0+β1σPZ∣]
Z Z Z
N ( 0 , 1 ) N(0,1) N(0,1)
E ( V ) = c o n s t a n t E(V)=constant E(V)=constant
1 1 + ϕ ( h ∣ β 0 ∣ β 1 ) \frac{1}{1+\phi (\frac{h|\beta_0|}{\beta_1})} 1+ϕ(β1h∣β0∣)1
K > S T K>S_T K>ST
K ≤ S τ K \le S_\tau K≤Sτ
K − S τ K-S_\tau K−Sτ
K > S 0 , k = S 0 K>S_0, k=S_0 K>S0,k=S0
m o n e y n e s s = l o g ( K S 0 ) σ τ moneyness=\frac{log(\frac{K}{S_0})}{\sigma \sqrt{\tau}} moneyness=στlog(S0K)
l o n g d a t e d = l a r g e τ long dated = large \tau longdated=largeτ
M o n e y n e s s = l o g ( K S 0 ) σ τ Moneyness = \frac{log(\frac{K}{S_0})}{\sigma\sqrt{\tau}} Moneyness=στlog(S0K)
S P X SPX SPX
3 b i l l i o n 3 billion 3billion
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i (r_{i,t}^{option})^2 RVtoption=i∑(ri,toption)2
realized variance
R V t o p t i o n = ∑ i ( r i , t o p t i o n ) 2 RV_t^{option}=\sum_i(r_{i,t}^{option})^2 RVtoption=i∑(ri,toption)2
边栏推荐
- Leetcode 729. 我的日程安排表 I(提供一种思路)
- Concepts of concurrency, parallelism, asynchronism, synchronization, multithreading and mutual exclusion
- Flutter wechat sharing
- Glide缓存机制
- Explain the imaging principle of various optical instruments in detail
- Ci/cd automatic test_ 16 best practices for CI / CD pipeline to accelerate test automation
- leetcode待做题目
- [tcapulusdb knowledge base] tcapulusdb tmonitor module architecture introduction
- File name setting causes an error to be written to writelines: oserror: [errno 22] invalid argument
- 2-4Kali下安装nessus
猜你喜欢

【TcaplusDB知识库】TcaplusDB Tmonitor模块架构介绍

Red envelope rain: a wonderful encounter between redis and Lua

ECMAScript 6(es6)

ci/cd自动化测试_CI / CD管道加快测试自动化的16种最佳实践

Error im002 when Oracle connects to MySQL

Win10快捷键整理

Imeta: a collection of imagegp+ video tutorials of high-value drawing websites, which has been cited 360 times (220625 updates)

What basic functions are required for live e-commerce application development? What is the future development prospect?

Glide caching mechanism

Record in detail the implementation of yolact instance segmentation ncnn
随机推荐
[noodle classic] Yunze Technology
[cloud enjoys freshness] community weekly · vol.68- Huawei cloud recruits partners in the field of industrial intelligence to provide strong support + business realization
Native JS implements page scroll bar loading data and page drop-down loading content
C语言学习-Day_06
Ubuntu manually installing MySQL
unity shadow 和outline组件动态加载出错解决方案、问题深入分析
JS all network request modes
20 jeunes Pi recrutés par l'Institut de microbiologie de l'Académie chinoise des sciences, 2 millions de frais d'établissement et 10 millions de fonds de démarrage (à long terme)
Explain the imaging principle of various optical instruments in detail
Brother sucks 590000 fans with his unique "quantum speed reading" skill: look at the street view for 0.1 seconds, and "snap" can be accurately found on the world map
User authentication technology
浅析基于边缘计算的移动AR实现(中)
Oracle trigger stored procedure writes at the same time
迪米特法则
Glide缓存机制
Leetcode 729. 我的日程安排表 I(提供一种思路)
Learning notes - data set generation
Border affects the height of the parent element - solution
Eureka core source code analysis
Dimitt's law