当前位置:网站首页>numpy.unique
numpy.unique
2022-08-01 23:21:00 【Wanderer001】
numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)[source]
Find the unique elements of an array.Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements:
the indices of the input array that give the unique values
the indices of the unique array that reconstruct the input array
the number of times each unique value comes up in the input array
Parameters
ararray_like
Input array. Unless axis is specified, this will be flattened if it is not already 1-D.
return_indexbool, optional
If True, also return the indices of ar (along the specified axis, if provided, or in the flattened array) that result in the unique array.
return_inversebool, optional
If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct ar.
return_countsbool, optional
If True, also return the number of times each unique item appears in ar.
New in version 1.9.0.
axisint or None, optional
The axis to operate on. If None, ar will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. Object arrays or structured arrays that contain objects are not supported if the axis kwarg is used. The default is None.
New in version 1.13.0.
Returns
uniquendarray
The sorted unique values.
unique_indicesndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if return_index is True.
unique_inversendarray, optional
The indices to reconstruct the original array from the unique array. Only provided if return_inverse is True.
unique_countsndarray, optional
The number of times each of the unique values comes up in the original array. Only provided if return_counts is True.
New in version 1.9.0.
See also
numpy.lib.arraysetops
Module with a number of other functions for performing set operations on arrays.
Notes
When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array (move the axis to the first dimension to keep the order of the other axes) and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element.
Examples
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])Return the unique rows of a 2D array
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])Return the indices of the original array that give the unique values:
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'], dtype='<U1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'], dtype='<U1')Reconstruct the input array from the unique values:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, ..., 1, 2, 1])
>>> u[indices]
array([1, 2, 6, ..., 2, 3, 2])边栏推荐
猜你喜欢
随机推荐
Additional Features for Scripting
最短路模板
Solve the port to take up
Chapter 12 End-User Task As Shell Scripts
Department project source code sharing
域名重定向工具 —— SwitchHosts 实用教程
美赞臣EDI 940仓库装运订单详解
云原生DevOps环境搭建
bat 之 特殊字符&转义
CF1705D Mark and Lightbulbs
excel cell contian two words, seperated by a slash
From 0 to 100: Notes on the Development of Enrollment Registration Mini Programs
仿牛客网项目第三章:开发社区核心功能(详细步骤和思路)
【C语言进阶】文件操作(二)
请问什么是 CICD
论文解读(GSAT)《Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism》
颜色透明参数
What can be done to make this SQL into a dangerous SQL?
Making a Simple 3D Renderer
Secondary Vocational Network Security Competition B7 Competition Deployment Process









