当前位置:网站首页>信号与系统:希尔伯特变换
信号与系统:希尔伯特变换
2022-07-24 05:20:00 【喵喵锤锤你小可爱】

令 f ( t ) = A m cos ( ω m t ) , 那 么 y ( t ) = h ( t ) ∗ f ( t ) = H [ f ( t ) ] 令f(t) =A_{m} \cos \left(\omega_{m} t\right),那么y(t) = h(t)*f(t) = H[f(t)] 令f(t)=Amcos(ωmt),那么y(t)=h(t)∗f(t)=H[f(t)]
所 以 y ( t ) = A m sin ( ω m t ) 所以y(t) = A_{m} \sin \left(\omega_{m} t\right) 所以y(t)=Amsin(ωmt)
对于一个实信号x(t),其希尔伯特变换为:
x ~ ( t ) = x ( t ) ∗ 1 π t \tilde{x}(t)=x(t) * \frac{1}{\pi t} x~(t)=x(t)∗πt1
性质:
相移 − π 2 r a d - \frac{\pi}{2} rad −2πrad,幅度不变。即理想 − π 2 r a d - \frac{\pi}{2} rad −2πrad全通相移器的频率响应特性定义为
1 π t \frac{1}{\pi t} πt1傅里叶变换
这里需要修改 一下,因为引用的文章好像有点点问题:
考虑符号函数的傅里叶变换:
sign ( t ) ⇔ 2 j ω \operatorname{sign}(t) \Leftrightarrow \frac{2}{j \omega} sign(t)⇔jω2
利用傅里叶变换的性质得:
2 j t ⇔ 2 π ⋅ sign ( − ω ) \frac{2}{j t} \Leftrightarrow 2 \pi \cdot \operatorname{sign}(- \omega) jt2⇔2π⋅sign(−ω)
运用线性性质,于是有:
1 π t ⇔ − j ⋅ sign ( ω ) \frac{1}{\pi t} \Leftrightarrow -j \cdot \operatorname{sign}(\omega) πt1⇔−j⋅sign(ω)
希尔伯特变换性质
x ^ ( t ) = x ( t ) ∗ 1 π t \hat{x}(t) = x(t) * \frac{1}{\pi t} \\[10pt] x^(t)=x(t)∗πt1
正变换
x ^ ( t ) = ∫ − ∞ ∞ x ( τ ) h ( t − τ ) d τ = 1 π ∫ − ∞ ∞ x ( τ ) t − τ d τ \hat{x}(t) =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d \tau x^(t)=∫−∞∞x(τ)h(t−τ)dτ=π1∫−∞∞t−τx(τ)dτ
反变换
x ( t ) = H − 1 [ x ^ ( t ) ] = − 1 π ∫ − ∞ ∞ x ^ ( τ ) t − τ d τ x(t)=\mathrm{H}^{-1}[\hat{x}(t)]=-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\hat{x}(\tau)}{t- \tau} d \tau x(t)=H−1[x^(t)]=−π1∫−∞∞t−τx^(τ)dτ
H [ H [ x ( t ) ] ] = − x ( t ) H − 1 [ x ( t ) ] = − H [ x ( t ) ] H [ c o s ( ω 0 t ) ] = s i n ( ω 0 t ) H [ s i n ( ω 0 t ) ] = − c o s ( ω 0 t ) H [ x ( t ) ∗ c o s ( ω 0 t ) ] = x ( t ) ∗ s i n ( ω 0 t ) H [ x ( t ) ∗ s i n ( ω 0 t ) ] = − x ( t ) ∗ c o s ( ω 0 t ) H [ 奇 函 数 ] = 偶 函 数 H [ 偶 函 数 ] = 奇 函 数 − j ⋅ sign ( ω ) ⋅ − j ⋅ sign ( ω ) = − 1 H[{H[x(t)]}] = -x(t) \\[4pt] H^{-1}[x(t)] = -H[x(t)] \\[4pt] H[cos(\omega_0 t)] = sin(\omega_0 t) \\[4pt] H[sin(\omega_0 t)] = -cos(\omega_0 t) \\[4pt] H[x(t)*cos(\omega_0 t)] = x(t)*sin(\omega_0 t) \\[4pt] H[x(t)*sin(\omega_0 t)] = -x(t)*cos(\omega_0 t) \\[4pt] H[奇函数] = 偶函数 \\[4pt] H[偶函数] = 奇函数 \\[4pt] -j \cdot \operatorname{sign}(\omega) \cdot -j \cdot \operatorname{sign}(\omega) = -1 H[H[x(t)]]=−x(t)H−1[x(t)]=−H[x(t)]H[cos(ω0t)]=sin(ω0t)H[sin(ω0t)]=−cos(ω0t)H[x(t)∗cos(ω0t)]=x(t)∗sin(ω0t)H[x(t)∗sin(ω0t)]=−x(t)∗cos(ω0t)H[奇函数]=偶函数H[偶函数]=奇函数−j⋅sign(ω)⋅−j⋅sign(ω)=−1
常用希尔伯特变换对:
f ( t ) f ^ ( t ) cos ω 0 t sin ω 0 t sin ω 0 t − cos ω 0 t e j ω 0 t − j e j ω 0 t m ( t ) e j ω 0 t − j m ( t ) e j ω 0 t \begin{array}{|l|l|} \hline \boldsymbol{f}(\boldsymbol{t}) & \hat{\boldsymbol{f}}(\boldsymbol{t}) \\ \hline \cos \omega_{0} t & \sin \omega_{0} t \\ \hline \sin \omega_{0} t & -\cos \omega_{0} t \\ \hline \mathrm{e}^{\mathrm{j} \omega_{0} t} & -\mathrm{j} \mathrm{e}^{\mathrm{j} \omega_{0} t} \\ \hline m(t) \mathrm{e}^{\mathrm{j} \omega_{0} t} & -\mathrm{j} m(t) \mathrm{e}^{\mathrm{j} \omega_{0} t} \\ \hline \end{array} f(t)cosω0tsinω0tejω0tm(t)ejω0tf^(t)sinω0t−cosω0t−jejω0t−jm(t)ejω0t
参考:
[1] https://blog.csdn.net/qq_37083038/article/details/108308162
[2] https://www.cnblogs.com/xingshansi/p/6498913.html
[3] https://www.cnblogs.com/xingshansi/p/6904215.html
边栏推荐
- Zotero快速上手指南
- tensorflow和pytorch框架的安装以及cuda踩坑记录
- 树莓派大用处,利用校园网搭建一个校园局域网站
- [activiti] Introduction to activiti
- 如何在网页上下载视频
- ‘Results do not correspond to current coco set‘
- Loss after cosine annealing decay of learning rate
- 测试数据增强后标签和数据集是否对应
- Problems in SSM project configuration, various dependencies, etc. (for personal use)
- Multi merchant mall system function disassembly lecture 07 - platform side commodity management
猜你喜欢
![[activiti] Introduction to activiti](/img/99/e973279d661960853b3af69a7e8ef2.png)
[activiti] Introduction to activiti

What do programmers often mean by API? What are the API types?

Typora 安装包2021年11月最后一次免费版本的安装包下载V13.6.1

西瓜书/南瓜书--第1,2章总结

Help transform traditional games into gamefi, and web3games promote a new direction of game development

第三章 线性模型总结

主成分分析计算步骤

《信号与系统》(吴京)部分课后习题答案与解析

多商户商城系统功能拆解11讲-平台端商品栏目

多商户商城系统功能拆解08讲-平台端商品分类
随机推荐
PyTorch 单机多卡分布式训练
DeepSort 总结
++cnt1[s1.charAt(i) - ‘a‘];
Multi merchant mall system function disassembly lecture 13 - platform side member management
【树莓派4B】七、远程登录树莓派的方法总结XShell,PuTTY,vncServer,Xrdp
《统计学习方法(第2版)》李航 第15章 奇异值分解 SVD 思维导图笔记 及 课后习题答案(步骤详细)SVD 矩阵奇异值 十五章
Likeshop | single merchant mall system code open source no encryption -php
世界坐标系、相机坐标系和图像坐标系的转换
PDF文本合并
Delete the weight of the head part of the classification network pre training weight and modify the weight name
Multi merchant mall system function disassembly lecture 04 - platform side merchants settling in
[activiti] activiti environment configuration
数据库连接数过大
ThreadLocal存储当前登录用户信息
推荐一款完全开源,功能丰富,界面精美的商城系统
《统计学习方法(第2版)》李航 第16章 主成分分析 PCA 思维导图笔记 及 课后习题答案(步骤详细)PCA 矩阵奇异值 第十六章
比较好的CV链接收藏(动态更新)
多商户商城系统功能拆解09讲-平台端商品品牌
The method of using bat command to quickly create system restore point
Logical structure of Oracle Database