当前位置:网站首页>Search and recall classic questions (eight queens)
Search and recall classic questions (eight queens)
2022-07-29 08:21:00 【Yu Xiansheng can't wake up】
Catalog
Basic framework of search and backtracking
This code outputs the result ( Output rows )
Code 2 outputs the result (1 For the Queen's position )
Today, let's learn the basic framework of search and backtracking and the classic question eight queens , If the question of eight queens is completely understood , Then you have a basic grasp of search and backtracking . Search and backtracking can solve any c++ The problem of .
Basic framework of search and backtracking
Basic framework 1
int search(int k)
{
for(i=1;i<= Number of operators ;i++)
if( Meet the conditions )
{
Save results
if( terminus ad quem ) Output solution ;
else search(k+1);
recovery : Status before saving the results { Go back one step }
}
}Basic framework 2
int search(int k)
{
if( terminus ad quem ) Output solution ;
else
for(i=1;i<= Number of operators ;i++)
if( Meet the conditions )
{
Save results
search(k+1);
recovery : Status before saving the results { Go back one step }
}
}Eight Queen code principle
int search(int i){
int j;
for(j=1;j<=8;j++) // Every queen has 8 A place ( Column ) It can be put on trial
if((!b[j])&&(!c[i+j])&&(!d[i-j+7])) // Look for the position of the queen after placing because c++ Negative arrays cannot be manipulated , So consider +7
{
a[i]=j; // Place the queen
b[j]=1; // Declare occupation of No j Column
c[i+j]=1; // Occupy two diagonals
d[i-j+7]=1;
if(i==8)print(); // All eight queens are placed , Output
else search(i+1); // Continue to recursively place the next queen
b[j]=0; // Recursive return is a backtracking step , The current queen exits
c[i+j]=0;
d[i-j+7]=0;
}
}
int print()
{
int i;
sum++; // The number of schemes is accumulated by one
cout<<"sun="<<sum<<endl;
for(i=1;i<=8;i++) // Output a solution
cout<<setw(4)<<a[i];
cout<<endl;
}
Eight Queen code
#include<bits/stdc++.h>
using namespace std;
bool d[16]={0},b[9]={0},c[16]={0};
short tot,sum,a[9];
int search(int);
int print();
int main()
{
//tot=0;
search(1);
//cout<<tot;
}
int search(int i){
int j;
for(j=1;j<=8;j++)
if((!b[j])&&(!c[i+j])&&(!d[i-j+7]))
{
a[i]=j;
b[j]=1;
c[i+j]=1;
d[i-j+7]=1;
if(i==8)print();
else search(i+1);
b[j]=0;
c[i+j]=0;
d[i-j+7]=0;
}
//return 0;
}
int print()
{
int i;
sum++;//tot=tot+1;
cout<<"sun="<<sum<<endl;
for(i=1;i<=8;i++)
cout<<setw(4)<<a[i];
cout<<endl;
//return 0;
}
This code outputs the result ( Output rows )
sun=1
1 5 8 6 3 7 2 4
sun=2
1 6 8 3 7 4 2 5
sun=3
1 7 4 6 8 2 5 3
sun=4
1 7 5 8 2 4 6 3
sun=5
2 4 6 8 3 1 7 5
sun=6
2 5 7 1 3 8 6 4
sun=7
2 5 7 4 1 8 6 3
sun=8
2 6 1 7 4 8 3 5
sun=9
2 6 8 3 1 4 7 5
sun=10
2 7 3 6 8 5 1 4
sun=11
2 7 5 8 1 4 6 3
sun=12
2 8 6 1 3 5 7 4
sun=13
3 1 7 5 8 2 4 6
sun=14
3 5 2 8 1 7 4 6
sun=15
3 5 2 8 6 4 7 1
sun=16
3 5 7 1 4 2 8 6
sun=17
3 5 8 4 1 7 2 6
sun=18
3 6 2 5 8 1 7 4
sun=19
3 6 2 7 1 4 8 5
sun=20
3 6 2 7 5 1 8 4
sun=21
3 6 4 1 8 5 7 2
sun=22
3 6 4 2 8 5 7 1
sun=23
3 6 8 1 4 7 5 2
sun=24
3 6 8 1 5 7 2 4
sun=25
3 6 8 2 4 1 7 5
sun=26
3 7 2 8 5 1 4 6
sun=27
3 7 2 8 6 4 1 5
sun=28
3 8 4 7 1 6 2 5
sun=29
4 1 5 8 2 7 3 6
sun=30
4 1 5 8 6 3 7 2
sun=31
4 2 5 8 6 1 3 7
sun=32
4 2 7 3 6 8 1 5
sun=33
4 2 7 3 6 8 5 1
sun=34
4 2 7 5 1 8 6 3
sun=35
4 2 8 5 7 1 3 6
sun=36
4 2 8 6 1 3 5 7
sun=37
4 6 1 5 2 8 3 7
sun=38
4 6 8 2 7 1 3 5
sun=39
4 6 8 3 1 7 5 2
sun=40
4 7 1 8 5 2 6 3
sun=41
4 7 3 8 2 5 1 6
sun=42
4 7 5 2 6 1 3 8
sun=43
4 7 5 3 1 6 8 2
sun=44
4 8 1 3 6 2 7 5
sun=45
4 8 1 5 7 2 6 3
sun=46
4 8 5 3 1 7 2 6
sun=47
5 1 4 6 8 2 7 3
sun=48
5 1 8 4 2 7 3 6
sun=49
5 1 8 6 3 7 2 4
sun=50
5 2 4 6 8 3 1 7
sun=51
5 2 4 7 3 8 6 1
sun=52
5 2 6 1 7 4 8 3
sun=53
5 2 8 1 4 7 3 6
sun=54
5 3 1 6 8 2 4 7
sun=55
5 3 1 7 2 8 6 4
sun=56
5 3 8 4 7 1 6 2
sun=57
5 7 1 3 8 6 4 2
sun=58
5 7 1 4 2 8 6 3
sun=59
5 7 2 4 8 1 3 6
sun=60
5 7 2 6 3 1 4 8
sun=61
5 7 2 6 3 1 8 4
sun=62
5 7 4 1 3 8 6 2
sun=63
5 8 4 1 3 6 2 7
sun=64
5 8 4 1 7 2 6 3
sun=65
6 1 5 2 8 3 7 4
sun=66
6 2 7 1 3 5 8 4
sun=67
6 2 7 1 4 8 5 3
sun=68
6 3 1 7 5 8 2 4
sun=69
6 3 1 8 4 2 7 5
sun=70
6 3 1 8 5 2 4 7
sun=71
6 3 5 7 1 4 2 8
sun=72
6 3 5 8 1 4 2 7
sun=73
6 3 7 2 4 8 1 5
sun=74
6 3 7 2 8 5 1 4
sun=75
6 3 7 4 1 8 2 5
sun=76
6 4 1 5 8 2 7 3
sun=77
6 4 2 8 5 7 1 3
sun=78
6 4 7 1 3 5 2 8
sun=79
6 4 7 1 8 2 5 3
sun=80
6 8 2 4 1 7 5 3
sun=81
7 1 3 8 6 4 2 5
sun=82
7 2 4 1 8 5 3 6
sun=83
7 2 6 3 1 4 8 5
sun=84
7 3 1 6 8 5 2 4
sun=85
7 3 8 2 5 1 6 4
sun=86
7 4 2 5 8 1 3 6
sun=87
7 4 2 8 6 1 3 5
sun=88
7 5 3 1 6 8 2 4
sun=89
8 2 4 1 7 5 3 6
sun=90
8 2 5 3 1 7 4 6
sun=91
8 3 1 6 2 5 7 4
sun=92
8 4 1 3 6 2 7 5
--------------------------------At this time you will find , EH , Why is this output not a two-dimensional array , Because it's just the number of columns output , If it's hard to understand the painting , Look at code two , This code is the location of the output queen .
Eight queens code two
#include<bits/stdc++.h>
using namespace std;
bool d[16]={0},b[9]={0},c[16]={0};
short tot,sum,a[9];
int search(int);
int print();
int main()
{
//tot=0;
search(1);
//cout<<tot;
}
int search(int i){
int j;
for(j=1;j<=8;j++)
if((!b[j])&&(!c[i+j])&&(!d[i-j+7]))
{
a[i]=j;
b[j]=1;
c[i+j]=1;
d[i-j+7]=1;
if(i==8)print();
else search(i+1);
b[j]=0;
c[i+j]=0;
d[i-j+7]=0;
}
//return 0;
}
int print()
{
int i;
sum++;//tot=tot+1;
cout<<"No."<<sum<<endl;
for(i=1;i<=8;i++){
for(int j=1;j<=8;j++)
if(i==a[j])cout<<1<<' ';
else cout<<0<<' ';
}
cout<<setw(4)<<a[i];
cout<<endl;
//return 0;
}
Code 2 outputs the result (1 For the Queen's position )
No.1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.3
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.4
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.5
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.6
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.7
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.8
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.9
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
No.10
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.11
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.12
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
No.13
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
No.14
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
No.15
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.16
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
No.17
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.18
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.19
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
No.20
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
No.21
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.22
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.23
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.24
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.25
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
No.26
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.27
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.28
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
No.29
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
No.30
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.31
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
No.32
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.33
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.34
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.35
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.36
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
No.37
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
No.38
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.39
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.40
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.41
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.42
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
No.43
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
No.44
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
No.45
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
No.46
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
No.47
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.48
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.49
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.50
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
No.51
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.52
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
No.53
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.54
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
No.55
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.56
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.57
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.58
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
No.59
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.60
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
No.61
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
No.62
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
No.63
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
No.64
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
No.65
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.66
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
No.67
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.68
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.69
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.70
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
No.71
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
No.72
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
No.73
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.74
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
No.75
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.76
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.77
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
No.78
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
No.79
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
No.80
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
No.81
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.82
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.83
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
No.84
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.85
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
No.86
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.87
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.88
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
No.89
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
No.90
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
No.91
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
No.92
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
----------------
----------------
Obviously, this output is more detailed , But it's slow , The result is 92 Methods .
Summary
This article explains the method and framework of search and backtracking , Explained the classic question eight queens , I hope I can help you .
边栏推荐
- [beauty of software engineering - column notes] 24 | technical debt: continue to make do with it, or overthrow it and start over?
- Beautiful girls
- Inclination monitoring solution of Internet of things
- Chapter contents of the romance of the Three Kingdoms
- 125kHz wake-up function 2.4GHz single transmitter chip-si24r2h
- Pnpm install appears: err_ PNPM_ PEER_ DEP_ ISSUES Unmet peer dependencies
- AES 双向加密解密工具
- Some tools, plug-ins and software links are shared with you~
- The computer video pauses and resumes, and the sound suddenly becomes louder
- Cv520 domestic replacement of ci521 13.56MHz contactless reader chip
猜你喜欢
![[academic related] why can't many domestic scholars' AI papers be reproduced?](/img/1a/7b162741aa7ef09538355001bf45e7.png)
[academic related] why can't many domestic scholars' AI papers be reproduced?

Cv520 domestic replacement of ci521 13.56MHz contactless reader chip

Day5: PHP simple syntax and usage

阿里巴巴政委体系-第一章、政委建在连队上

Privacy is more secure in the era of digital RMB

Random lottery turntable wechat applet project source code

Qt/pyqt window type and window flag

Simplefoc parameter adjustment 1-torque control

Mysql rownum 实现

STM32 serial port garbled
随机推荐
Eps32+platform+arduino running lantern
Smart energy management system solution
Clion+opencv+aruco+cmake configuration
[academic related] why can't many domestic scholars' AI papers be reproduced?
Solve the problem of MSVC2017 compiler with yellow exclamation mark in kits component of QT
Application scheme of charging pile
Background management system platform of new energy charging pile
Simplefoc parameter adjustment 3-pid parameter setting strategy
网络安全之安全基线
To create a thread pool for the rate, start the core thread
数字人民币时代隐私更安全
Proteus simulation based on msp430f2491 (realize water lamp)
Second week of postgraduate freshman training: convolutional neural network foundation
SQL 面试碰到的一个问题
Security baseline of network security
[beauty of software engineering - column notes] "one question and one answer" issue 2 | 30 common software development problem-solving strategies
Ws2812b color lamp driver based on f407zgt6
Ga-rpn: recommended area network for guiding anchors
Gan: generate adversarial networks
Unity多人联机框架Mirro学习记录(一)