当前位置:网站首页>Search and recall classic questions (eight queens)
Search and recall classic questions (eight queens)
2022-07-29 08:21:00 【Yu Xiansheng can't wake up】
Catalog
Basic framework of search and backtracking
This code outputs the result ( Output rows )
Code 2 outputs the result (1 For the Queen's position )
Today, let's learn the basic framework of search and backtracking and the classic question eight queens , If the question of eight queens is completely understood , Then you have a basic grasp of search and backtracking . Search and backtracking can solve any c++ The problem of .
Basic framework of search and backtracking
Basic framework 1
int search(int k)
{
for(i=1;i<= Number of operators ;i++)
if( Meet the conditions )
{
Save results
if( terminus ad quem ) Output solution ;
else search(k+1);
recovery : Status before saving the results { Go back one step }
}
}Basic framework 2
int search(int k)
{
if( terminus ad quem ) Output solution ;
else
for(i=1;i<= Number of operators ;i++)
if( Meet the conditions )
{
Save results
search(k+1);
recovery : Status before saving the results { Go back one step }
}
}Eight Queen code principle
int search(int i){
int j;
for(j=1;j<=8;j++) // Every queen has 8 A place ( Column ) It can be put on trial
if((!b[j])&&(!c[i+j])&&(!d[i-j+7])) // Look for the position of the queen after placing because c++ Negative arrays cannot be manipulated , So consider +7
{
a[i]=j; // Place the queen
b[j]=1; // Declare occupation of No j Column
c[i+j]=1; // Occupy two diagonals
d[i-j+7]=1;
if(i==8)print(); // All eight queens are placed , Output
else search(i+1); // Continue to recursively place the next queen
b[j]=0; // Recursive return is a backtracking step , The current queen exits
c[i+j]=0;
d[i-j+7]=0;
}
}
int print()
{
int i;
sum++; // The number of schemes is accumulated by one
cout<<"sun="<<sum<<endl;
for(i=1;i<=8;i++) // Output a solution
cout<<setw(4)<<a[i];
cout<<endl;
}
Eight Queen code
#include<bits/stdc++.h>
using namespace std;
bool d[16]={0},b[9]={0},c[16]={0};
short tot,sum,a[9];
int search(int);
int print();
int main()
{
//tot=0;
search(1);
//cout<<tot;
}
int search(int i){
int j;
for(j=1;j<=8;j++)
if((!b[j])&&(!c[i+j])&&(!d[i-j+7]))
{
a[i]=j;
b[j]=1;
c[i+j]=1;
d[i-j+7]=1;
if(i==8)print();
else search(i+1);
b[j]=0;
c[i+j]=0;
d[i-j+7]=0;
}
//return 0;
}
int print()
{
int i;
sum++;//tot=tot+1;
cout<<"sun="<<sum<<endl;
for(i=1;i<=8;i++)
cout<<setw(4)<<a[i];
cout<<endl;
//return 0;
}
This code outputs the result ( Output rows )
sun=1
1 5 8 6 3 7 2 4
sun=2
1 6 8 3 7 4 2 5
sun=3
1 7 4 6 8 2 5 3
sun=4
1 7 5 8 2 4 6 3
sun=5
2 4 6 8 3 1 7 5
sun=6
2 5 7 1 3 8 6 4
sun=7
2 5 7 4 1 8 6 3
sun=8
2 6 1 7 4 8 3 5
sun=9
2 6 8 3 1 4 7 5
sun=10
2 7 3 6 8 5 1 4
sun=11
2 7 5 8 1 4 6 3
sun=12
2 8 6 1 3 5 7 4
sun=13
3 1 7 5 8 2 4 6
sun=14
3 5 2 8 1 7 4 6
sun=15
3 5 2 8 6 4 7 1
sun=16
3 5 7 1 4 2 8 6
sun=17
3 5 8 4 1 7 2 6
sun=18
3 6 2 5 8 1 7 4
sun=19
3 6 2 7 1 4 8 5
sun=20
3 6 2 7 5 1 8 4
sun=21
3 6 4 1 8 5 7 2
sun=22
3 6 4 2 8 5 7 1
sun=23
3 6 8 1 4 7 5 2
sun=24
3 6 8 1 5 7 2 4
sun=25
3 6 8 2 4 1 7 5
sun=26
3 7 2 8 5 1 4 6
sun=27
3 7 2 8 6 4 1 5
sun=28
3 8 4 7 1 6 2 5
sun=29
4 1 5 8 2 7 3 6
sun=30
4 1 5 8 6 3 7 2
sun=31
4 2 5 8 6 1 3 7
sun=32
4 2 7 3 6 8 1 5
sun=33
4 2 7 3 6 8 5 1
sun=34
4 2 7 5 1 8 6 3
sun=35
4 2 8 5 7 1 3 6
sun=36
4 2 8 6 1 3 5 7
sun=37
4 6 1 5 2 8 3 7
sun=38
4 6 8 2 7 1 3 5
sun=39
4 6 8 3 1 7 5 2
sun=40
4 7 1 8 5 2 6 3
sun=41
4 7 3 8 2 5 1 6
sun=42
4 7 5 2 6 1 3 8
sun=43
4 7 5 3 1 6 8 2
sun=44
4 8 1 3 6 2 7 5
sun=45
4 8 1 5 7 2 6 3
sun=46
4 8 5 3 1 7 2 6
sun=47
5 1 4 6 8 2 7 3
sun=48
5 1 8 4 2 7 3 6
sun=49
5 1 8 6 3 7 2 4
sun=50
5 2 4 6 8 3 1 7
sun=51
5 2 4 7 3 8 6 1
sun=52
5 2 6 1 7 4 8 3
sun=53
5 2 8 1 4 7 3 6
sun=54
5 3 1 6 8 2 4 7
sun=55
5 3 1 7 2 8 6 4
sun=56
5 3 8 4 7 1 6 2
sun=57
5 7 1 3 8 6 4 2
sun=58
5 7 1 4 2 8 6 3
sun=59
5 7 2 4 8 1 3 6
sun=60
5 7 2 6 3 1 4 8
sun=61
5 7 2 6 3 1 8 4
sun=62
5 7 4 1 3 8 6 2
sun=63
5 8 4 1 3 6 2 7
sun=64
5 8 4 1 7 2 6 3
sun=65
6 1 5 2 8 3 7 4
sun=66
6 2 7 1 3 5 8 4
sun=67
6 2 7 1 4 8 5 3
sun=68
6 3 1 7 5 8 2 4
sun=69
6 3 1 8 4 2 7 5
sun=70
6 3 1 8 5 2 4 7
sun=71
6 3 5 7 1 4 2 8
sun=72
6 3 5 8 1 4 2 7
sun=73
6 3 7 2 4 8 1 5
sun=74
6 3 7 2 8 5 1 4
sun=75
6 3 7 4 1 8 2 5
sun=76
6 4 1 5 8 2 7 3
sun=77
6 4 2 8 5 7 1 3
sun=78
6 4 7 1 3 5 2 8
sun=79
6 4 7 1 8 2 5 3
sun=80
6 8 2 4 1 7 5 3
sun=81
7 1 3 8 6 4 2 5
sun=82
7 2 4 1 8 5 3 6
sun=83
7 2 6 3 1 4 8 5
sun=84
7 3 1 6 8 5 2 4
sun=85
7 3 8 2 5 1 6 4
sun=86
7 4 2 5 8 1 3 6
sun=87
7 4 2 8 6 1 3 5
sun=88
7 5 3 1 6 8 2 4
sun=89
8 2 4 1 7 5 3 6
sun=90
8 2 5 3 1 7 4 6
sun=91
8 3 1 6 2 5 7 4
sun=92
8 4 1 3 6 2 7 5
--------------------------------At this time you will find , EH , Why is this output not a two-dimensional array , Because it's just the number of columns output , If it's hard to understand the painting , Look at code two , This code is the location of the output queen .
Eight queens code two
#include<bits/stdc++.h>
using namespace std;
bool d[16]={0},b[9]={0},c[16]={0};
short tot,sum,a[9];
int search(int);
int print();
int main()
{
//tot=0;
search(1);
//cout<<tot;
}
int search(int i){
int j;
for(j=1;j<=8;j++)
if((!b[j])&&(!c[i+j])&&(!d[i-j+7]))
{
a[i]=j;
b[j]=1;
c[i+j]=1;
d[i-j+7]=1;
if(i==8)print();
else search(i+1);
b[j]=0;
c[i+j]=0;
d[i-j+7]=0;
}
//return 0;
}
int print()
{
int i;
sum++;//tot=tot+1;
cout<<"No."<<sum<<endl;
for(i=1;i<=8;i++){
for(int j=1;j<=8;j++)
if(i==a[j])cout<<1<<' ';
else cout<<0<<' ';
}
cout<<setw(4)<<a[i];
cout<<endl;
//return 0;
}
Code 2 outputs the result (1 For the Queen's position )
No.1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.3
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.4
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.5
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.6
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.7
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.8
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.9
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
No.10
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.11
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.12
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
No.13
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
No.14
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
No.15
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.16
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
No.17
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.18
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.19
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
No.20
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
No.21
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.22
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.23
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.24
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.25
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
No.26
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.27
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.28
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
No.29
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
No.30
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.31
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
No.32
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.33
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.34
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.35
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.36
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
No.37
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
No.38
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.39
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.40
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.41
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.42
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
No.43
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
No.44
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
No.45
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
No.46
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
No.47
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.48
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.49
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.50
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
No.51
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.52
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
No.53
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
No.54
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
No.55
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.56
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
No.57
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.58
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
No.59
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.60
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
No.61
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
No.62
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
No.63
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
No.64
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
No.65
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.66
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
No.67
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.68
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
No.69
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
No.70
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
No.71
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
No.72
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
No.73
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.74
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
No.75
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
No.76
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
No.77
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
No.78
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
No.79
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
No.80
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
No.81
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.82
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.83
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
No.84
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.85
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
No.86
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
No.87
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
No.88
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
No.89
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
No.90
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
No.91
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
No.92
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
----------------
----------------
Obviously, this output is more detailed , But it's slow , The result is 92 Methods .
Summary
This article explains the method and framework of search and backtracking , Explained the classic question eight queens , I hope I can help you .
边栏推荐
- Back up Google or other browser plug-ins
- PostgreSQL手动创建HikariDataSource解决报错Cannot commit when autoCommit is enabled
- 数仓分层设计及数据同步问题,,220728,,,,
- Network Security Learning chapter
- Noise monitoring and sensing system
- [noi simulation] computational geometry (convex hull, violence, and search set)
- Detailed steps of installing MySQL 5.7 for windows
- Dp1332e multi protocol highly integrated contactless read-write chip
- [beauty of software engineering - column notes] 22 | how to do a good job in technology selection for the project?
- To create a thread pool for the rate, start the core thread
猜你喜欢

Arduinoide + stm32link burning debugging

Smart energy management system solution

Detailed steps of installing MySQL 5.7 for windows
![[robomaster] control RM motor from scratch (2) -can communication principle and electric regulation communication protocol](/img/7c/ba52c7bc11d165892d7390ad8ce298.png)
[robomaster] control RM motor from scratch (2) -can communication principle and electric regulation communication protocol

Week 2: convolutional neural network basics

Stm32ff030 replaces domestic MCU dp32g030

Unity shader learning (VI) achieving radar scanning effect

阿里巴巴政委体系-第四章、政委建在连队上

Four pin OLED display based on stm32

sql判断语句的编写
随机推荐
深度学习(2):图片文字识别
简易计算器微信小程序项目源码
[beauty of software engineering - column notes] 22 | how to do a good job in technology selection for the project?
AES 双向加密解密工具
STM32 serial port garbled
Proteus simulation based on 51 MCU ADC0808
Day4: the establishment of MySQL database and its simplicity and practicality
torch.Tensor.to的用法
Noise monitoring and sensing system
Inclination monitoring solution of Internet of things
Clion+opencv+aruco+cmake configuration
Tle5012b+stm32f103c8t6 (bluepill) reading angle data
ML.NET相关资源整理
Data warehouse layered design and data synchronization,, 220728,,,,
The difference between torch.tensor and torch.tensor
Arduino uno error analysis avrdude: stk500_ recv(): programmer is not responding
Crawl notes
Brief introduction and use of commonjs import and export and ES6 modules import and export
Eps32+platform+arduino running lantern
Collation of ml.net related resources