当前位置:网站首页>抽象队列同步器AQS应用Lock详解
抽象队列同步器AQS应用Lock详解
2022-08-02 14:15:00 【怎么起个名就那么难】
多线程系列文章目录
Java并发编程核心在于java.util.concurrent包而juc当中的大多数同步器实现都是围绕着共同的基础行为,比如等待队列、条件队列、独占获取、共享获取等,而这个行为的抽象就是基于AbstractQueuedSynchronizer简称AQS,AQS定义了一套多线程访问共享资源的同步器框架,是一个依赖状态(state)的同步器。
一、ReentrantLock
ReentrantLock是一种基于AQS框架的应用实现,是JDK中的一种线程并发访问的同步手段,它的功能类似于synchronized是一种互斥锁,可以保证线程安全。而且它具有比synchronized更多的特性,比如它支持手动加锁与解锁,支持加锁的公平性。
使用ReentrantLock进行同步
ReentrantLock lock = new ReentrantLock(false);//false为非公平锁,true为公平锁
lock.lock() //加锁
lock.unlock() //解锁
ReentrantLock如何实现synchronized不具备的公平与非公平性呢?
在ReentrantLock内部定义了一个Sync的内部类,该类继承AbstractQueuedSynchronized,对该抽象类的部分方法做了实现;并且还定义了两个子类:
1、FairSync 公平锁的实现
2、NonfairSync 非公平锁的实现
这两个类都继承自Sync,也就是间接继承了AbstractQueuedSynchronized,所以这一个ReentrantLock同时具备公平与非公平特性。
上面主要涉及的设计模式:模板模式-子类根据需要做具体业务实现
二、AQS具备特性
阻塞等待队列
共享/独占
公平/非公平
可重入
允许中断
除了Lock外,Java.util.concurrent当中同步器的实现如Latch,Barrier,BlockingQueue等,都是基于AQS框架实现一般通过定义内部类Sync继承AQS
将同步器所有调用都映射到Sync对应的方法 AQS内部维护属性volatile int state (32位)
state表示资源的可用状态
State三种访问方式
getState()、setState()、compareAndSetState()
AQS定义两种资源共享方式Exclusive-独占,只有一个线程能执行,如ReentrantLock
Share-共享,多个线程可以同时执行,如Semaphore/CountDownLatch
AQS定义两种队列同步等待队列
条件等待队列
不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:
- isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
- tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
- tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
- tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
- tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。
三丶同步等待队列
AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人发明的一种基于双向链表数据结构的队列,是FIFO先入先出线程等待队列,Java中的CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。
四丶条件等待队列
Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备时,这些等待线程才会被唤醒,从而重新争夺锁
五丶AQS源码分析
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private static final long serialVersionUID = 7373984972572414691L;
/** * Creates a new {@code AbstractQueuedSynchronizer} instance * with initial synchronization state of zero. */
protected AbstractQueuedSynchronizer() { }
/** * Wait queue node class. * * 不管是条件队列,还是CLH等待队列 * 都是基于Node类 * * AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人 * 发明的一种基于双向链表数据结构的队列,是FIFO先入先出线程等待队列,Java中的 * CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。 */
static final class Node {
/** * 标记节点未共享模式 * */
static final Node SHARED = new Node();
/** * 标记节点为独占模式 */
static final Node EXCLUSIVE = null;
/** * 在同步队列中等待的线程等待超时或者被中断,需要从同步队列中取消等待 * */
static final int CANCELLED = 1;
/** * 后继节点的线程处于等待状态,而当前的节点如果释放了同步状态或者被取消, * 将会通知后继节点,使后继节点的线程得以运行。 */
static final int SIGNAL = -1;
/** * 节点在等待队列中,节点的线程等待在Condition上,当其他线程对Condition调用了signal()方法后, * 该节点会从等待队列中转移到同步队列中,加入到同步状态的获取中 */
static final int CONDITION = -2;
/** * 表示下一次共享式同步状态获取将会被无条件地传播下去 */
static final int PROPAGATE = -3;
/** * 标记当前节点的信号量状态 (1,0,-1,-2,-3)5种状态 * 使用CAS更改状态,volatile保证线程可见性,高并发场景下, * 即被一个线程修改后,状态会立马让其他线程可见。 */
volatile int waitStatus;
/** * 前驱节点,当前节点加入到同步队列中被设置 */
volatile Node prev;
/** * 后继节点 */
volatile Node next;
/** * 节点同步状态的线程 */
volatile Thread thread;
/** * 等待队列中的后继节点,如果当前节点是共享的,那么这个字段是一个SHARED常量, * 也就是说节点类型(独占和共享)和等待队列中的后继节点共用同一个字段。 */
Node nextWaiter;
/** * Returns true if node is waiting in shared mode. */
final boolean isShared() {
return nextWaiter == SHARED;
}
/** * 返回前驱节点 */
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
//空节点,用于标记共享模式
Node() { // Used to establish initial head or SHARED marker
}
//用于同步队列CLH
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
//用于条件队列
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
/** * 指向同步等待队列的头节点 */
private transient volatile Node head;
/** * 指向同步等待队列的尾节点 */
private transient volatile Node tail;
/** * 同步资源状态 */
private volatile int state;
/** * * @return current state value */
protected final int getState() {
return state;
}
protected final void setState(int newState) {
state = newState;
}
/** * Atomically sets synchronization state to the given updated * value if the current state value equals the expected value. * This operation has memory semantics of a {@code volatile} read * and write. * * @param expect the expected value * @param update the new value * @return {@code true} if successful. False return indicates that the actual * value was not equal to the expected value. */
protected final boolean compareAndSetState(int expect, int update) {
// See below for intrinsics setup to support this
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
// Queuing utilities
/** * The number of nanoseconds for which it is faster to spin * rather than to use timed park. A rough estimate suffices * to improve responsiveness with very short timeouts. */
static final long spinForTimeoutThreshold = 1000L;
/** * 节点加入CLH同步队列 */
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
//队列为空需要初始化,创建空的头节点
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
//set尾部节点
if (compareAndSetTail(t, node)) {
//当前节点置为尾部
t.next = node; //前驱节点的next指针指向当前节点
return t;
}
}
}
}
/** * Creates and enqueues node for current thread and given mode. * * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared * @return the new node */
private Node addWaiter(Node mode) {
// 1. 将当前线程构建成Node类型
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
// 2. 1当前尾节点是否为null?
if (pred != null) {
// 2.2 将当前节点尾插入的方式
node.prev = pred;
// 2.3 CAS将节点插入同步队列的尾部
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
/** * Sets head of queue to be node, thus dequeuing. Called only by * acquire methods. Also nulls out unused fields for sake of GC * and to suppress unnecessary signals and traversals. * * @param node the node */
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}
/** * */
private void unparkSuccessor(Node node) {
//获取wait状态
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);// 将等待状态waitStatus设置为初始值0
/** * 若后继结点为空,或状态为CANCEL(已失效),则从后尾部往前遍历找到最前的一个处于正常阻塞状态的结点 * 进行唤醒 */
Node s = node.next; //head.next = Node1 ,thread = T3
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);//唤醒线程,T3唤醒
}
/** * 把当前结点设置为SIGNAL或者PROPAGATE * 唤醒head.next(B节点),B节点唤醒后可以竞争锁,成功后head->B,然后又会唤醒B.next,一直重复直到共享节点都唤醒 * head节点状态为SIGNAL,重置head.waitStatus->0,唤醒head节点线程,唤醒后线程去竞争共享锁 * head节点状态为0,将head.waitStatus->Node.PROPAGATE传播状态,表示需要将状态向后继节点传播 */
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
//head是SIGNAL状态
/* head状态是SIGNAL,重置head节点waitStatus为0,E这里不直接设为Node.PROPAGAT, * 是因为unparkSuccessor(h)中,如果ws < 0会设置为0,所以ws先设置为0,再设置为PROPAGATE * 这里需要控制并发,因为入口有setHeadAndPropagate跟release两个,避免两次unpark */
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; //设置失败,重新循环
/* head状态为SIGNAL,且成功设置为0之后,唤醒head.next节点线程 * 此时head、head.next的线程都唤醒了,head.next会去竞争锁,成功后head会指向获取锁的节点, * 也就是head发生了变化。看最底下一行代码可知,head发生变化后会重新循环,继续唤醒head的下一个节点 */
unparkSuccessor(h);
/* * 如果本身头节点的waitStatus是出于重置状态(waitStatus==0)的,将其设置为“传播”状态。 * 意味着需要将状态向后一个节点传播 */
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) //如果head变了,重新循环
break;
}
}
/** * 把node节点设置成head节点,且Node.waitStatus->Node.PROPAGATE */
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; //h用来保存旧的head节点
setHead(node);//head引用指向node节点
/* 这里意思有两种情况是需要执行唤醒操作 * 1.propagate > 0 表示调用方指明了后继节点需要被唤醒 * 2.头节点后面的节点需要被唤醒(waitStatus<0),不论是老的头结点还是新的头结点 */
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())//node是最后一个节点或者 node的后继节点是共享节点
/* 如果head节点状态为SIGNAL,唤醒head节点线程,重置head.waitStatus->0 * head节点状态为0(第一次添加时是0),设置head.waitStatus->Node.PROPAGATE表示状态需要向后继节点传播 */
doReleaseShared();
}
}
// Utilities for various versions of acquire
/** * 终结掉正在尝试去获取锁的节点 * @param node the node */
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)
return;
node.thread = null;
// 剔除掉一件被cancel掉的节点
Node pred = node.prev;
while (pred.waitStatus > 0)
node.prev = pred = pred.prev;
// predNext is the apparent node to unsplice. CASes below will
// fail if not, in which case, we lost race vs another cancel
// or signal, so no further action is necessary.
Node predNext = pred.next;
// Can use unconditional write instead of CAS here.
// After this atomic step, other Nodes can skip past us.
// Before, we are free of interference from other threads.
node.waitStatus = Node.CANCELLED;
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {
compareAndSetNext(pred, predNext, null);
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) {
Node next = node.next;
if (next != null && next.waitStatus <= 0)
compareAndSetNext(pred, predNext, next);
} else {
unparkSuccessor(node);
}
node.next = node; // help GC
}
}
/** * */
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/* * 若前驱结点的状态是SIGNAL,意味着当前结点可以被安全地park */
return true;
if (ws > 0) {
/* * 前驱节点状态如果被取消状态,将被移除出队列 */
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/* * 当前驱节点waitStatus为 0 or PROPAGATE状态时 * 将其设置为SIGNAL状态,然后当前结点才可以可以被安全地park */
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
/** * 中断当前线程 */
static void selfInterrupt() {
Thread.currentThread().interrupt();
}
/** * 阻塞当前节点,返回当前Thread的中断状态 * LockSupport.park 底层实现逻辑调用系统内核功能 pthread_mutex_lock 阻塞线程 */
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);//阻塞
return Thread.interrupted();
}
/** * 已经在队列当中的Thread节点,准备阻塞等待获取锁 */
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
//死循环
final Node p = node.predecessor();//找到当前结点的前驱结点
if (p == head && tryAcquire(arg)) {
//如果前驱结点是头结点,才tryAcquire,其他结点是没有机会tryAcquire的。
setHead(node);//获取同步状态成功,将当前结点设置为头结点。
p.next = null; // help GC
failed = false;
return interrupted;
}
/** * 如果前驱节点不是Head,通过shouldParkAfterFailedAcquire判断是否应该阻塞 * 前驱节点信号量为-1,当前线程可以安全被parkAndCheckInterrupt用来阻塞线程 */
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/** * 与acquireQueued逻辑相似,唯一区别节点还不在队列当中需要先进行入队操作 */
private void doAcquireInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.EXCLUSIVE);//以独占模式放入队列尾部
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/** * 独占模式定时获取 */
private boolean doAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.EXCLUSIVE);//加入队列
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return true;
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;//超时直接返回获取失败
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
//阻塞指定时长,超时则线程自动被唤醒
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())//当前线程中断状态
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/** * 尝试获取共享锁 */
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);//入队
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//前驱节点
if (p == head) {
int r = tryAcquireShared(arg); //非公平锁实现,再尝试获取锁
//state==0时tryAcquireShared会返回>=0(CountDownLatch中返回的是1)。
// state为0说明共享次数已经到了,可以获取锁了
if (r >= 0) {
//r>0表示state==0,前继节点已经释放锁,锁的状态为可被获取
//这一步设置node为head节点设置node.waitStatus->Node.PROPAGATE,然后唤醒node.thread
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
//前继节点非head节点,将前继节点状态设置为SIGNAL,通过park挂起node节点的线程
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/** * Acquires in shared interruptible mode. * @param arg the acquire argument */
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/** * Acquires in shared timed mode. * * @param arg the acquire argument * @param nanosTimeout max wait time * @return {@code true} if acquired */
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// Main exported methods
/** * 尝试获取独占锁,可指定锁的获取数量 */
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
/** * 尝试释放独占锁,在子类当中实现 */
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
/** * 共享式:共享式地获取同步状态。对于独占式同步组件来讲,同一时刻只有一个线程能获取到同步状态, * 其他线程都得去排队等待,其待重写的尝试获取同步状态的方法tryAcquire返回值为boolean,这很容易理解; * 对于共享式同步组件来讲,同一时刻可以有多个线程同时获取到同步状态,这也是“共享”的意义所在。 * 本方法待被之类覆盖实现具体逻辑 * 1.当返回值大于0时,表示获取同步状态成功,同时还有剩余同步状态可供其他线程获取; * * 2.当返回值等于0时,表示获取同步状态成功,但没有可用同步状态了; * 3.当返回值小于0时,表示获取同步状态失败。 */
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
/** * 释放共享锁,具体实现在子类当中实现 */
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
/** * 当前线程是否持有独占锁 */
protected boolean isHeldExclusively() {
throw new UnsupportedOperationException();
}
/** * 获取独占锁 */
public final void acquire(int arg) {
//尝试获取锁
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//独占模式
selfInterrupt();
}
/** * */
public final void acquireInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
/** * 获取独占锁,设置最大等待时间 */
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquire(arg) ||
doAcquireNanos(arg, nanosTimeout);
}
/** * 释放独占模式持有的锁 */
public final boolean release(int arg) {
if (tryRelease(arg)) {
//释放一次锁
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);//唤醒后继结点
return true;
}
return false;
}
/** * 请求获取共享锁 */
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)//返回值小于0,获取同步状态失败,排队去;获取同步状态成功,直接返回去干自己的事儿。
doAcquireShared(arg);
}
/** * Releases in shared mode. Implemented by unblocking one or more * threads if {@link #tryReleaseShared} returns true. * * @param arg the release argument. This value is conveyed to * {@link #tryReleaseShared} but is otherwise uninterpreted * and can represent anything you like. * @return the value returned from {@link #tryReleaseShared} */
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
// Queue inspection methods
public final boolean hasQueuedThreads() {
return head != tail;
}
public final boolean hasContended() {
return head != null;
}
public final Thread getFirstQueuedThread() {
// handle only fast path, else relay
return (head == tail) ? null : fullGetFirstQueuedThread();
}
/** * Version of getFirstQueuedThread called when fastpath fails */
private Thread fullGetFirstQueuedThread() {
Node h, s;
Thread st;
if (((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.thread) != null) ||
((h = head) != null && (s = h.next) != null &&
s.prev == head && (st = s.thread) != null))
return st;
Node t = tail;
Thread firstThread = null;
while (t != null && t != head) {
Thread tt = t.thread;
if (tt != null)
firstThread = tt;
t = t.prev;
}
return firstThread;
}
/** * 判断当前线程是否在队列当中 */
public final boolean isQueued(Thread thread) {
if (thread == null)
throw new NullPointerException();
for (Node p = tail; p != null; p = p.prev)
if (p.thread == thread)
return true;
return false;
}
final boolean apparentlyFirstQueuedIsExclusive() {
Node h, s;
return (h = head) != null &&
(s = h.next) != null &&
!s.isShared() &&
s.thread != null;
}
/** * 判断当前节点是否有前驱节点 */
public final boolean hasQueuedPredecessors() {
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
// Instrumentation and monitoring methods
/** * 同步队列长度 */
public final int getQueueLength() {
int n = 0;
for (Node p = tail; p != null; p = p.prev) {
if (p.thread != null)
++n;
}
return n;
}
/** * 获取队列等待thread集合 */
public final Collection<Thread> getQueuedThreads() {
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node p = tail; p != null; p = p.prev) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
return list;
}
/** * 获取独占模式等待thread线程集合 */
public final Collection<Thread> getExclusiveQueuedThreads() {
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node p = tail; p != null; p = p.prev) {
if (!p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
/** * 获取共享模式等待thread集合 */
public final Collection<Thread> getSharedQueuedThreads() {
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node p = tail; p != null; p = p.prev) {
if (p.isShared()) {
Thread t = p.thread;
if (t != null)
list.add(t);
}
}
return list;
}
// Internal support methods for Conditions
/** * 判断节点是否在同步队列中 */
final boolean isOnSyncQueue(Node node) {
//快速判断1:节点状态或者节点没有前置节点
//注:同步队列是有头节点的,而条件队列没有
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
//快速判断2:next字段只有同步队列才会使用,条件队列中使用的是nextWaiter字段
if (node.next != null) // If has successor, it must be on queue
return true;
//上面如果无法判断则进入复杂判断
return findNodeFromTail(node);
}
private boolean findNodeFromTail(Node node) {
Node t = tail;
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
/** * 将节点从条件队列当中移动到同步队列当中,等待获取锁 */
final boolean transferForSignal(Node node) {
/* * 修改节点信号量状态为0,失败直接返回false */
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
/* * 加入同步队列尾部当中,返回前驱节点 */
Node p = enq(node);
int ws = p.waitStatus;
//前驱节点不可用 或者 修改信号量状态失败
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread); //唤醒当前节点
return true;
}
final boolean transferAfterCancelledWait(Node node) {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
enq(node);
return true;
}
/* * If we lost out to a signal(), then we can't proceed * until it finishes its enq(). Cancelling during an * incomplete transfer is both rare and transient, so just * spin. */
while (!isOnSyncQueue(node))
Thread.yield();
return false;
}
/** * 入参就是新创建的节点,即当前节点 */
final int fullyRelease(Node node) {
boolean failed = true;
try {
//这里这个取值要注意,获取当前的state并释放,这从另一个角度说明必须是独占锁
//可以考虑下这个逻辑放在共享锁下面会发生什么?
int savedState = getState();
if (release(savedState)) {
failed = false;
return savedState;
} else {
//如果这里释放失败,则抛出异常
throw new IllegalMonitorStateException();
}
} finally {
/** * 如果释放锁失败,则把节点取消,由这里就能看出来上面添加节点的逻辑中 * 只需要判断最后一个节点是否被取消就可以了 */
if (failed)
node.waitStatus = Node.CANCELLED;
}
}
// Instrumentation methods for conditions
public final boolean hasWaiters(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.hasWaiters();
}
/** * 获取条件队列长度 */
public final int getWaitQueueLength(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitQueueLength();
}
/** * 获取条件队列当中所有等待的thread集合 */
public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
if (!owns(condition))
throw new IllegalArgumentException("Not owner");
return condition.getWaitingThreads();
}
/** * 条件对象,实现基于条件的具体行为 */
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
/** * Creates a new {@code ConditionObject} instance. */
public ConditionObject() { }
// Internal methods
/** * 1.与同步队列不同,条件队列头尾指针是firstWaiter跟lastWaiter * 2.条件队列是在获取锁之后,也就是临界区进行操作,因此很多地方不用考虑并发 */
private Node addConditionWaiter() {
Node t = lastWaiter;
//如果最后一个节点被取消,则删除队列中被取消的节点
//至于为啥是最后一个节点后面会分析
if (t != null && t.waitStatus != Node.CONDITION) {
//删除所有被取消的节点
unlinkCancelledWaiters();
t = lastWaiter;
}
//创建一个类型为CONDITION的节点并加入队列,由于在临界区,所以这里不用并发控制
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
/** * 发信号,通知遍历条件队列当中的节点转移到同步队列当中,准备排队获取锁 */
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) && //转移节点
(first = firstWaiter) != null);
}
/** * 通知所有节点移动到同步队列当中,并将节点从条件队列删除 */
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
/** * 删除条件队列当中被取消的节点 */
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
t.nextWaiter = null;
if (trail == null)
firstWaiter = next;
else
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
t = next;
}
}
// public methods
/** * 发新号,通知条件队列当中节点到同步队列当中去排队 */
public final void signal() {
if (!isHeldExclusively())//节点不能已经持有独占锁
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
/** * 发信号通知条件队列的节点准备到同步队列当中去排队 */
doSignal(first);
}
/** * 唤醒所有条件队列的节点转移到同步队列当中 */
public final void signalAll() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignalAll(first);
}
/** * Implements uninterruptible condition wait. * <ol> * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * </ol> */
public final void awaitUninterruptibly() {
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if (Thread.interrupted())
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}
/** 该模式表示在退出等待时重新中断 */
private static final int REINTERRUPT = 1;
/** 异常中断 */
private static final int THROW_IE = -1;
/** * 这里的判断逻辑是: * 1.如果现在不是中断的,即正常被signal唤醒则返回0 * 2.如果节点由中断加入同步队列则返回THROW_IE,由signal加入同步队列则返回REINTERRUPT */
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
/** * 根据中断时机选择抛出异常或者设置线程中断状态 */
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
/** * 加入条件队列等待,条件队列入口 */
public final void await() throws InterruptedException {
//T2进来
//如果当前线程被中断则直接抛出异常
if (Thread.interrupted())
throw new InterruptedException();
//把当前节点加入条件队列
Node node = addConditionWaiter();
//释放掉已经获取的独占锁资源
int savedState = fullyRelease(node);//T2释放锁
int interruptMode = 0;
//如果不在同步队列中则不断挂起
while (!isOnSyncQueue(node)) {
LockSupport.park(this);//T1被阻塞
//这里被唤醒可能是正常的signal操作也可能是中断
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
/** * 走到这里说明节点已经条件满足被加入到了同步队列中或者中断了 * 这个方法很熟悉吧?就跟独占锁调用同样的获取锁方法,从这里可以看出条件队列只能用于独占锁 * 在处理中断之前首先要做的是从同步队列中成功获取锁资源 */
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
//走到这里说明已经成功获取到了独占锁,接下来就做些收尾工作
//删除条件队列中被取消的节点
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
//根据不同模式处理中断
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
/** * Implements timed condition wait. * <ol> * <li> If current thread is interrupted, throw InterruptedException. * <li> Save lock state returned by {@link #getState}. * <li> Invoke {@link #release} with saved state as argument, * throwing IllegalMonitorStateException if it fails. * <li> Block until signalled, interrupted, or timed out. * <li> Reacquire by invoking specialized version of * {@link #acquire} with saved state as argument. * <li> If interrupted while blocked in step 4, throw InterruptedException. * <li> If timed out while blocked in step 4, return false, else true. * </ol> */
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
long nanosTimeout = unit.toNanos(time);
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
return sync == AbstractQueuedSynchronizer.this;
}
/** * Queries whether any threads are waiting on this condition. * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}. * * @return {@code true} if there are any waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
}
/** * Returns an estimate of the number of threads waiting on * this condition. * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}. * * @return the estimated number of waiting threads * @throws IllegalMonitorStateException if {@link #isHeldExclusively} * returns {@code false} */
protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
}
/** * 得到同步队列当中所有在等待的Thread集合 */
protected final Collection<Thread> getWaitingThreads() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Thread t = w.thread;
if (t != null)
list.add(t);
}
}
return list;
}
}
/** * Setup to support compareAndSet. We need to natively implement * this here: For the sake of permitting future enhancements, we * cannot explicitly subclass AtomicInteger, which would be * efficient and useful otherwise. So, as the lesser of evils, we * natively implement using hotspot intrinsics API. And while we * are at it, we do the same for other CASable fields (which could * otherwise be done with atomic field updaters). * unsafe魔法类,直接绕过虚拟机内存管理机制,修改内存 */
private static final Unsafe unsafe = Unsafe.getUnsafe();
//偏移量
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset;
static {
try {
//状态偏移量
stateOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
//head指针偏移量,head指向CLH队列的头部
headOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next"));
} catch (Exception ex) { throw new Error(ex); }
}
/** * CAS 修改头部节点指向. 并发入队时使用. */
private final boolean compareAndSetHead(Node update) {
return unsafe.compareAndSwapObject(this, headOffset, null, update);
}
/** * CAS 修改尾部节点指向. 并发入队时使用. */
private final boolean compareAndSetTail(Node expect, Node update) {
return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
}
/** * CAS 修改信号量状态. */
private static final boolean compareAndSetWaitStatus(Node node,
int expect,
int update) {
return unsafe.compareAndSwapInt(node, waitStatusOffset,
expect, update);
}
/** * 修改节点的后继指针. */
private static final boolean compareAndSetNext(Node node,
Node expect,
Node update) {
return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
}
}
AQS框架具体实现-独占锁实现ReentrantLock
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
/** * 内部调用AQS的动作,都基于该成员属性实现 */
private final Sync sync;
/** * ReentrantLock锁同步操作的基础类,继承自AQS框架. * 该类有两个继承类,1、NonfairSync 非公平锁,2、FairSync公平锁 */
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
/** * 加锁的具体行为由子类实现 */
abstract void lock();
/** * 尝试获取非公平锁 */
final boolean nonfairTryAcquire(int acquires) {
//acquires = 1
final Thread current = Thread.currentThread();
int c = getState();
/** * 不需要判断同步队列(CLH)中是否有排队等待线程 * 判断state状态是否为0,不为0可以加锁 */
if (c == 0) {
//unsafe操作,cas修改state状态
if (compareAndSetState(0, acquires)) {
//独占状态锁持有者指向当前线程
setExclusiveOwnerThread(current);
return true;
}
}
/** * state状态不为0,判断锁持有者是否是当前线程, * 如果是当前线程持有 则state+1 */
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
//加锁失败
return false;
}
/** * 释放锁 */
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
/** * 判断持有独占锁的线程是否是当前线程 */
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}
//返回条件对象
final ConditionObject newCondition() {
return new ConditionObject();
}
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
final boolean isLocked() {
return getState() != 0;
}
/** * Reconstitutes the instance from a stream (that is, deserializes it). */
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
/** * 非公平锁 */
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/** * 加锁行为 */
final void lock() {
/** * 第一步:直接尝试加锁 * 与公平锁实现的加锁行为一个最大的区别在于,此处不会去判断同步队列(CLH队列)中 * 是否有排队等待加锁的节点,上来直接加锁(判断state是否为0,CAS修改state为1) * ,并将独占锁持有者 exclusiveOwnerThread 属性指向当前线程 * 如果当前有人占用锁,再尝试去加一次锁 */
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
//AQS定义的方法,加锁
acquire(1);
}
/** * 父类AbstractQueuedSynchronizer.acquire()中调用本方法 */
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/** * 公平锁 */
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
acquire(1);
}
/** * 重写aqs中的方法逻辑 * 尝试加锁,被AQS的acquire()方法调用 */
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
/** * 与非公平锁中的区别,需要先判断队列当中是否有等待的节点 * 如果没有则可以尝试CAS获取锁 */
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
//独占线程指向当前线程
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
/** * 默认构造函数,创建非公平锁对象 */
public ReentrantLock() {
sync = new NonfairSync();
}
/** * 根据要求创建公平锁或非公平锁 */
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
/** * 加锁 */
public void lock() {
sync.lock();
}
/** * 尝试获去取锁,获取失败被阻塞,线程被中断直接抛出异常 */
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
/** * 尝试加锁 */
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
/** * 指定等待时间内尝试加锁 */
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
/** * 尝试去释放锁 */
public void unlock() {
sync.release(1);
}
/** * 返回条件对象 */
public Condition newCondition() {
return sync.newCondition();
}
/** * 返回当前线程持有的state状态数量 */
public int getHoldCount() {
return sync.getHoldCount();
}
/** * 查询当前线程是否持有锁 */
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
/** * 状态表示是否被Thread加锁持有 */
public boolean isLocked() {
return sync.isLocked();
}
/** * 是否公平锁?是返回true 否则返回 false */
public final boolean isFair() {
return sync instanceof FairSync;
}
/** * 获取持有锁的当前线程 */
protected Thread getOwner() {
return sync.getOwner();
}
/** * 判断队列当中是否有在等待获取锁的Thread节点 */
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
/** * 当前线程是否在同步队列中等待 */
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
/** * 获取同步队列长度 */
public final int getQueueLength() {
return sync.getQueueLength();
}
/** * 返回Thread集合,排队中的所有节点Thread会被返回 */
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
/** * 条件队列当中是否有正在等待的节点 */
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
}
总结
烧脑!!!!!!!!!!!!!!!!!!!!!!!!
2.读入数据
代码如下(示例):
data = pd.read_csv(
'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
该处使用的url网络请求的数据。
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
边栏推荐
猜你喜欢
随机推荐
Doubly linked list (normal iterators and const iterators)
【solidity智能合约基础】节约gas的利器--view和pure
饥荒联机版Mod开发——配置代码环境(二)
【线程】线程创建 | 理解线程并发 (1)
假的服务器日志(给history内容增加ip、用户等内容)
【无标题】
tpproxy-tcp透明代理
分布式一致性协议-Raft
Zabbix: PHP option“date.timezone” Fail
优先级表和Ascll表
Oauth2.0 安全性(以微信授权登陆为例)
OpenPose 运行指令 ([email protected])
LITESTAR 4D应用:室内植物照明模拟
【进程间通信】信号量的使用/共享内存
基类和派生类的关系【继承】/多态和虚函数/【继承和多态】抽象类和简单工厂
三大特殊类(String Object 包装类)与异常
H3C 交换机配置端口组、DHCP、DHCP中继、管理用户
JCMsuite应用:四分之一波片
分布式一致性协议-Gossip
代码细节带来的极致体验,ShardingSphere 5.1.0 性能提升密钥