当前位置:网站首页>【论文笔记】Understanding Long Programming Languages with Structure-Aware Sparse Attention
【论文笔记】Understanding Long Programming Languages with Structure-Aware Sparse Attention
2022-08-04 08:08:00 【m0_61899108】
论文
论文题目:Understanding Long Programming Languages with Structure-Aware Sparse Attention
收录于: SIGIR 2022
项目地址:GitHub - alibaba/EasyNLP: EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit
参考博客:【SIGIR 2022】面向长代码序列的Transformer模型优化方法,提升长代码场景性能 - 掘金 (juejin.cn)
简介
基于编程的预训练语言模型(PPLM),如CodeBERT,在许多与下游代码相关的任务中取得了巨大的成功。但由于Transformer中自我注意的内存和计算复杂性随着序列长度的增加而呈二次曲线增长,因此PPLM通常将代码长度限制在512。然而,现实应用中的代码通常很长,例如代码搜索,现有的PPLM无法有效地处理这些代码。
为解决这一问题,本文提出结构感知的稀疏注意力Transformer模型SASA,这是面向长代码序列的Transformer模型优化方法,致力于提升长代码场景下的效果和性能。由于self-attention模块的复杂度随序列长度呈次方增长,多数编程预训练语言模型(Programming-based Pretrained Language Models, PPLM)采用序列截断的方式处理代码序列。SASA方法将self-attention的计算稀疏化,同时结合了代码的结构特性,从而提升了长序列任务的性能,也降低了内存和计算复杂度。
模型框架
其中,SASA主要包含两个阶段:预处理阶段和Sparse Transformer训练阶段。
- 在预处理阶段得到两个token之间的交互矩阵,一个是top-k frequency矩阵,一个是AST pattern矩阵。Top-k frequency矩阵是利用代码预训练语言模型在CodeSearchNet语料上学习token之间的attention交互频率,AST pattern矩阵是解析代码的抽象语法树(Abstract Syntax Tree,AST ),根据语法树的连接关系得到token之间的交互信息。
- Sparse Transformer训练阶段以Transformer Encoder作为基础框架,将full self-attention替换为structure-aware sparse self-attention,在符合特定模式的token pair之间进行attention计算,从而降低计算复杂度。
SASA稀疏注意力一共包括如下四个模块:
- Sliding window attention:仅在滑动窗口内的token之间计算self-attention,保留局部上下文的特征,计算复杂度为O(n×w),n为序列长度,w是滑动窗口大小。
- Global attention:设置一定的global token,这些token将与序列中所有token进行attention计算,从而获取序列的全局信息,计算复杂度为O(n×g),g为global token个数。
- Top-k sparse attention:Transformer模型中的attention交互是稀疏且长尾的,对于每个token,仅与其attention交互最高的top-k个token计算attention,复杂度为O(n×k)。
- AST-aware structure attention:代码不同于自然语言序列,有更强的结构特性,通过将代码解析成抽象语法树(AST),然后根据语法树中的连接关系确定attention计算的范围。
为了适应现代硬件的并行计算特性,论文将序列划分为若干block,而非以token为单位进行计算,每个query block与w个滑动窗口blocks和g个global blocks以及k个top-k和AST blocks计算attention,总体的计算复杂度为O(n(w+g+k)b),b为block size。
每个sparse attention pattern 对应一个attention矩阵,以sliding window attention为例,其attention矩阵的计算为:
SASA伪代码:
实验结果
采用CodeXGLUE[1]提供的四个任务数据集进行评测,分别为code clone detection,defect detection,code search,code summarization。我们提取其中的序列长度大于512的数据组成长序列数据集,实验结果如下:
从实验结果可以看出,SASA在三个数据集上的性能明显超过所有Baseline。其中Roberta-base[2],CodeBERT[3],GraphCodeBERT[4]是采用截断的方式处理长序列,这将损失一部分的上下文信息。Longformer[5]和BigBird[6]是在自然语言处理中用于处理长序列的方法,但未考虑代码的结构特性,直接迁移到代码任务上效果不佳。
为了验证top-k sparse attention和AST-aware sparse attention模块的效果,在BigCloneBench和Defect Detection数据集上做了消融实验,结果如下:
sparse attention模块不仅对于长代码的任务性能有提升,还可以大幅减少显存使用,在同样的设备下,SASA可以设置更大的batch size,而full self-attention的模型则面临out of memory的问题,具体显存使用情况如下图:
SASA作为一个sparse attention的模块,可以迁移到基于Transformer的其他预训练模型上,用于处理长序列的自然语言处理任务。
边栏推荐
猜你喜欢
随机推荐
金仓数据库 KDTS 迁移工具使用指南 (6. 注意事项)
【CNN基础】转置卷积学习笔记
解决报错: YarnScheduler: Initial job has not accepted any resources
Distributed Computing MapReduce | Spark Experiment
【STM32】STM32F103系列名称与封装、内存
轻量化Backbone VGNetG成就“不做选择,全都要”轻量化主干网络
从底层看 Redis 的五种数据类型
【NOI模拟赛】纸老虎博弈(博弈论SG函数,长链剖分)
【UE虚幻引擎】UE5三步骤实现AI漫游与对话行为
线程和进程之间的区别
智能健身动作识别:PP-TinyPose打造AI虚拟健身教练!
金仓数据库的单节点如何转集群?
此时已莺飞草长,愿世间美好与你环环相扣
binder通信实现
华为设备配置VRRP与路由联动监视上行链路
How to write patents are more likely to pass?
LeetCode每日五题01:两数之和 (均1200题)
解决:Hbuilder工具点击发行打包,一直报尚未完成社区身份验证,请点击链接xxxxx,项目xxx发布H5失败的错误。
MySQL group_concat()详解
Yolov5 replaces the backbone network of "Megvii Lightweight Convolutional Neural Network ShuffleNetv2"