当前位置:网站首页>[paper notes] mobile robot autonomous navigation experimental platform based on deep learning
[paper notes] mobile robot autonomous navigation experimental platform based on deep learning
2022-07-28 03:36:00 【See deer (Python version)】
Catalog
Abstract
The work of this paper :
- Built a mobile robot experimental platform ;
- An autonomous navigation method based on deep learning is designed → \rightarrow → Input RGB Images , Directly output the control signal , Avoid complex feature engineering and planning strategies ;
key word
- Mobile robots ;
- Autonomous Navigation ;
- Deep learning ;
- Convolutional neural networks
Usually, mobile robot systems sense the surrounding environment through sensors , Such as laser sensor 、 ultrasonic sensor 、 Vision Sensors, etc , However, due to the limited carrying sensors , Most systems have insufficient decision-making and control capabilities .
The hardware mainly includes : Raspberry pie 4B Upper computer 、STM32F103RC Lower machine 、 Motor and its drive 、 sensor
1 Mobile robot platform
1.1 Platform hardware system
| project | Content |
|---|---|
| sensor ( Encoder ) | Hall encoder with incremental output |
| sensor ( camera ) | LETMC-520 camera |
| chassis | Mcnamm wheel , The hub shaft is formed with the roller rotating shaft 45 ° 45\degree 45° horn , It can ensure the omni-directional movement of the robot |
| The motor | GB37520 DC motor |
| Motor drive | TB6612FNG |
| Power Supply | Aircraft model battery |
| Upper computer | Raspberry pie 4B → \rightarrow → Algorithm implementation runs 、 Collect sensor information 、 Lower computer communication |
| signal communication | USB2.0 two-way 、 Data frame format 、USB-TTL modular |
| Lower machine | STM32F103RC → \rightarrow → Data collection 、 Chassis Control 、 signal communication |
1.2 Platform software system
| project | Content |
|---|---|
| OS | Ubuntu Mate 18.04 |
| Chassis control node | subscribe /cmd_vel topic of conversation → \rightarrow → Extract chassis target Linear velocity and angular velocity Information → \rightarrow → Inverse kinematics → \rightarrow → Motor's Target speed → \rightarrow → Lower machine |
| Chassis control node | Get chassis motion state data , and Release Corresponding topic |
| Lower machine | C Language programming 、FreeRTOS Schedule tasks |
| Motor control algorithm | PID |


2 Autonomous navigation method based on deep learning
2.1 Deep learning model

The four are ( 128 , 64 , 64 , 16 ) (128,64,64,16) (128,64,64,16) The full connection layer of
Each floor also adopts ReLU Function to activate
Definition :
- s ( k ) s(k) s(k) → \rightarrow → Steering control signal
- i ( k ) i(k) i(k) → \rightarrow → Model input RGB Images
- i ( k ) = f ( s ( k ) ) i(k) = f\big( s(k) \big) i(k)=f(s(k)) The trained model is used f f f Express
- ω ∗ \omega^{\ast} ω∗ → \rightarrow → Target angular velocity of mobile robot
- The inverse normalized signal is processed by first-order low-pass filtering to obtain the target angular velocity of the mobile robot :
ω ∗ = α β s ( k ) + ( 1 − α ) ω ∗ ( k − 1 ) \omega^{\ast} = \alpha\beta s(k)+(1-\alpha)\omega^{\ast}(k-1) ω∗=αβs(k)+(1−α)ω∗(k−1)
α = 0.9 \alpha = 0.9 α=0.9 And β = 1.4 \beta = 1.4 β=1.4
2.2 model training
Control robots → \rightarrow → Observe - The action is right Data sets
| project | Content |
|---|---|
| package | Keras、Tensorflow |
| normalization ( Images ) | yes , [ 0 , 1 ] [0,1] [0,1] |
| normalization ( Steering control signal ) | yes , [ − 1 , 1 ] [-1,1] [−1,1] |
| Data ratio ( corner ) | 0.1494 |
| Data ratio ( Straight Line ) | 0.6304 |
| Data ratio ( obstacle ) | 0.2202 |
| Dataset size | 106623 |
| Data set partition ratio | 3:1:1 |
| Data set content | 80% → \rightarrow → No obstacles + noise ;20% → \rightarrow → Avoid obstacles + No noise is injected |
| Training process monitoring indicators | Mean square error MSE、 Mean absolute error MAE |
| Training loss function | Root mean square |
| Train the optimizer | RMSProp |
| Steering control signal threshold | 0.1 |
The mean square error and mean absolute error on the test set are 0.039 and 0.102

3 Autonomous Navigation experiment
- Autonomous Navigation node Pre use Keras、Tensorflow Read the trained model
- subscribe /camera/rgb/image_raw Topic to Fixed period Get the of the camera RGB Images
- RGB Image input model , Output steering control signal
- Anti normalization And First order low-pass filter The target angular velocity of the mobile robot is obtained by processing ; Release **/cmd_vel** topic of conversation
- ROS Chassis control node subscription in **/cmd_vel** Topic to control the motion of mobile robots .

Generalization experiment : Avoid sudden obstacles → \rightarrow → Empty bucket bottle 
4 Conclusion
边栏推荐
- deepstream 检测结果截图
- The wonderful use of asemi rectifier bridge GBPC3510 in DC brush motor
- Xctf attack and defense world web master advanced area php2
- 20220727 use the Bluetooth module hc-05 of Huicheng technology to pair mobile phones for Bluetooth serial port demonstration
- Unity simply implements the dialog function
- 容器相关的概念
- What is tor? What is the use of tor browser update?
- 695. Maximum area of the island
- 自定义注解的使用
- 单调栈——739. 每日温度
猜你喜欢

MySQL stored procedures use cursors to synchronize data between two tables

C language to achieve a dynamic version of the address book

什么是Tor?Tor浏览器更新有什么用?

Robot development -- lead screw and guide rail

接口自动化测试,完整入门篇

TypeError: ufunc ‘bitwise_and‘ not supported for the input types, and the inputs could not be safely

4天Excel实战训练营,0.01元特惠仅三天,赠200套学习资料包

MySQL的碎片有哪些

C语言实现动态版本的通讯录

695. 岛屿的最大面积
随机推荐
Play WolframAlpha computing knowledge engine
20 soul chicken soup beautiful sentences, sentence by sentence warm heart!
如何让外网访问内网IP(esp8266网页使用)
光年(Light Year Admin)后台管理系统模板
Outlook tutorial, how to use color categories and reminders in outlook?
动态规划——62. 不同路径
容器相关的概念
"Xiaodeng" network equipment monitoring in operation and maintenance
Robot development -- lead screw and guide rail
Swift中的协议
Xctf attack and defense world web master advanced area php2
2022 summary of the latest Android handler related interview questions
整合SSM实现增删改查搜索
Outlook 教程,如何在 Outlook 中使用颜色类别和提醒?
接口自动化测试,完整入门篇
Leetcode 208. implement trie (prefix tree) (2022.07.27)
沃尔沃:深入人心的“安全感” 究竟靠的是什么?
如何解决mysql深分页问题
贪心——55. 跳跃游戏
xctf攻防世界 Web高手进阶区 unserialize3