当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University General exercises two person solution
Advanced Mathematics (Seventh Edition) Tongji University General exercises two person solution
2022-07-26 07:07:00 【Navigator_ Z】
Advanced mathematics ( The seventh edition ) Tongji University Total exercise 2
1. stay “ to the full ”“ necessary ” and “ It is necessary and sufficient ” Choose the correct one of the three and fill in the space below : \begin{aligned}&1. \ stay “ to the full ”“ necessary ” and “ It is necessary and sufficient ” Choose the correct one of the three and fill in the space below :&\end{aligned} 1. stay “ to the full ”“ necessary ” and “ It is necessary and sufficient ” Choose the correct one of the three and fill in the space below :
( 1 ) f ( x ) At point x 0 Derivable yes f ( x ) At point x 0 Successive _ _ _ _ _ _ Conditions . f ( x ) At point x 0 Continuous is f ( x ) At point x 0 To guide _ _ _ _ _ _ Conditions ; ( 2 ) f ( x ) At point x 0 The left derivative of f − ′ ( x 0 ) And right derivative f + ′ ( x 0 ) All exist and are equal f ( x ) At point x 0 To guide _ _ _ _ _ _ Conditions ; ( 3 ) f ( x ) At point x 0 Derivable yes f ( x ) At point x 0 Differentiable _ _ _ _ _ _ Conditions . \begin{aligned} &\ \ (1)\ \ f(x) At point x_0 Derivable yes f(x) At point x_0 Successive \_\_\_\_\_\_ Conditions .f(x) At point x_0 Continuous is f(x) At point x_0 To guide \_\_\_\_\_\_ Conditions ;\\\\ &\ \ (2)\ \ f(x) At point x_0 The left derivative of f_-'(x_0) And right derivative f'_+(x_0) All exist and are equal f(x) At point x_0 To guide \_\_\_\_\_\_ Conditions ;\\\\ &\ \ (3)\ \ f(x) At point x_0 Derivable yes f(x) At point x_0 Differentiable \_\_\_\_\_\_ Conditions . & \end{aligned} (1) f(x) At point x0 Derivable yes f(x) At point x0 Successive ______ Conditions .f(x) At point x0 Continuous is f(x) At point x0 To guide ______ Conditions ; (2) f(x) At point x0 The left derivative of f−′(x0) And right derivative f+′(x0) All exist and are equal f(x) At point x0 To guide ______ Conditions ; (3) f(x) At point x0 Derivable yes f(x) At point x0 Differentiable ______ Conditions .
Explain :
( 1 ) to the full , necessary ( 2 ) It is necessary and sufficient ( 3 ) It is necessary and sufficient \begin{aligned} &\ \ (1)\ to the full , necessary \\\\ &\ \ (2)\ It is necessary and sufficient \\\\ &\ \ (3)\ It is necessary and sufficient & \end{aligned} (1) to the full , necessary (2) It is necessary and sufficient (3) It is necessary and sufficient
2. set up f ( x ) = x ( x + 1 ) ( x + 2 ) ⋅ ⋅ ⋅ ( x + n ) ( n ≥ 2 ) , be f ′ ( 0 ) = _ _ _ _ _ _ \begin{aligned}&2. \ set up f(x)=x(x+1)(x+2)\cdot\cdot\cdot(x+n)\ (n \ge 2), be f'(0)=\_\_\_\_\_\_&\end{aligned} 2. set up f(x)=x(x+1)(x+2)⋅⋅⋅(x+n) (n≥2), be f′(0)=______
Explain :
f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x − 0 = lim x → 0 [ ( x + 1 ) ( x + 2 ) ⋅ ⋅ ⋅ ( x + n ) ] = n ! \begin{aligned} &\ \ f'(0)=\lim_{x \rightarrow 0}\frac{f(x)-f(0)}{x-0}=\lim_{x \rightarrow 0}[(x+1)(x+2)\cdot\cdot\cdot(x+n)]=n! & \end{aligned} f′(0)=x→0limx−0f(x)−f(0)=x→0lim[(x+1)(x+2)⋅⋅⋅(x+n)]=n!
3. Four conclusions are given in the following questions , Choose a correct conclusion from it : \begin{aligned}&3. \ Four conclusions are given in the following questions , Choose a correct conclusion from it :&\end{aligned} 3. Four conclusions are given in the following questions , Choose a correct conclusion from it :
set up f ( x ) stay x = a There is a definition in a neighborhood of , be f ( x ) stay x = a A sufficient condition for local differentiability is ( ) ( A ) lim h → + ∞ h [ f ( a + 1 h ) − f ( a ) ] There is ( B ) lim h → 0 f ( a + 2 h ) − f ( a + h ) h There is ( C ) lim h → 0 f ( a + h ) − f ( a − h ) 2 h There is ( D ) lim h → 0 f ( a ) − f ( a − h ) h There is . \begin{aligned} &\ \ set up f(x) stay x=a There is a definition in a neighborhood of , be f(x) stay x=a A sufficient condition for local differentiability is (\ \ \ \ \ )\\\\ &\ \ (A)\ \ \lim_{h \rightarrow +\infty}h\left[f\left(a+\frac{1}{h}\right)-f(a)\right] There is \\\\ &\ \ (B)\ \ \lim_{h \rightarrow 0}\frac{f(a+2h)-f(a+h)}{h} There is \\\\ &\ \ (C)\ \ \lim_{h \rightarrow 0}\frac{f(a+h)-f(a-h)}{2h} There is \\\\ &\ \ (D)\ \ \lim_{h \rightarrow 0}\frac{f(a)-f(a-h)}{h} There is . & \end{aligned} set up f(x) stay x=a There is a definition in a neighborhood of , be f(x) stay x=a A sufficient condition for local differentiability is ( ) (A) h→+∞limh[f(a+h1)−f(a)] There is (B) h→0limhf(a+2h)−f(a+h) There is (C) h→0lim2hf(a+h)−f(a−h) There is (D) h→0limhf(a)−f(a−h) There is .
Explain :
A Can only know f + ′ ( a ) There is . B , take f ( x ) = { 1 , x ≠ 0 , 0 , x = 0. f ( x ) stay x = 0 You can't lead . C , take f ( x ) = ∣ x ∣ , f ( x ) stay x = 0 You can't lead . D correct . \begin{aligned} &\ \ A Can only know f_+'(a) There is .\\\\ &\ \ B, take f(x)=\begin{cases}1,x \neq 0,\\\\0,x=0.\end{cases}f(x) stay x=0 You can't lead .\\\\ &\ \ C, take f(x)=|x|,f(x) stay x=0 You can't lead .\\\\ &\ \ D correct . & \end{aligned} A Can only know f+′(a) There is . B, take f(x)=⎩⎨⎧1,x=0,0,x=0.f(x) stay x=0 You can't lead . C, take f(x)=∣x∣,f(x) stay x=0 You can't lead . D correct .
4. There is a thin rod , Take one end of the bar as the origin , The coordinates of any point on the bar are x , So it is distributed in the interval [ 0 , x ] Top thin bar quality m And x There is a functional relationship m = m ( x ) . How to determine the thin bar at the point x 0 Linear density at ( For uniform thin rods , The mass of a thin rod per unit length is called its linear density )? \begin{aligned}&4. \ There is a thin rod , Take one end of the bar as the origin , The coordinates of any point on the bar are x, So it is distributed in the interval [0,\ x] Top thin bar \\\\&\ \ \ \ quality m And x There is a functional relationship m=m(x). How to determine the thin bar at the point x_0 Linear density at ( For uniform thin rods ,\\\\&\ \ \ \ The mass of a thin rod per unit length is called its linear density )?&\end{aligned} 4. There is a thin rod , Take one end of the bar as the origin , The coordinates of any point on the bar are x, So it is distributed in the interval [0, x] Top thin bar quality m And x There is a functional relationship m=m(x). How to determine the thin bar at the point x0 Linear density at ( For uniform thin rods , The mass of a thin rod per unit length is called its linear density )?
Explain :
In the interval [ x 0 , x 0 + Δ x ] The average linear density on is ρ ‾ = Δ m Δ x = m ( x 0 + Δ x ) − m ( x 0 ) Δ x At point x 0 The linear density at is ρ ( x 0 ) = lim Δ x → 0 m ( x 0 + Δ x ) − m ( x 0 ) Δ x = d m d x ∣ x = x 0 \begin{aligned} &\ \ In the interval [x_0,\ x_0+\Delta x] The average linear density on is \overline{\rho}=\frac{\Delta m}{\Delta x}=\frac{m(x_0+\Delta x)-m(x_0)}{\Delta x}\\\\ &\ \ At point x_0 The linear density at is \rho(x_0)=\lim_{\Delta x \rightarrow 0}\frac{m(x_0+\Delta x)-m(x_0)}{\Delta x}=\frac{dm}{dx}\bigg|_{x=x_0} & \end{aligned} In the interval [x0, x0+Δx] The average linear density on is ρ=ΔxΔm=Δxm(x0+Δx)−m(x0) At point x0 The linear density at is ρ(x0)=Δx→0limΔxm(x0+Δx)−m(x0)=dxdm∣∣x=x0
5. According to the definition of derivative , seek f ( x ) = 1 x The derivative of . \begin{aligned}&5. \ According to the definition of derivative , seek f(x)=\frac{1}{x} The derivative of .&\end{aligned} 5. According to the definition of derivative , seek f(x)=x1 The derivative of .
Explain :
According to the definition of derivative , When x ≠ 0 when , ( 1 x ) ′ = lim Δ x → 0 1 x + Δ x − 1 x Δ x = lim Δ x → 0 − 1 x ( x + Δ x ) = − 1 x 2 \begin{aligned} &\ \ According to the definition of derivative , When x \neq 0 when ,\left(\frac{1}{x}\right)'=\lim_{\Delta x \rightarrow 0}\frac{\frac{1}{x+\Delta x}-\frac{1}{x}}{\Delta x}=\lim_{\Delta x \rightarrow 0}\frac{-1}{x(x+\Delta x)}=-\frac{1}{x^2} & \end{aligned} According to the definition of derivative , When x=0 when ,(x1)′=Δx→0limΔxx+Δx1−x1=Δx→0limx(x+Δx)−1=−x21
6. Find the following function f ( x ) Of f − ′ ( 0 ) And f + ′ ( 0 ) , also f ′ ( 0 ) Whether there is : \begin{aligned}&6. \ Find the following function f(x) Of f_-'(0) And f_+'(0), also f'(0) Whether there is :&\end{aligned} 6. Find the following function f(x) Of f−′(0) And f+′(0), also f′(0) Whether there is :
( 1 ) f ( x ) = { s i n x , x < 0 , l n ( 1 + x ) , x ≥ 0 ; ( 2 ) f ( x ) = { x 1 + e 1 x , x ≠ 0 , 0 , x = 0. \begin{aligned} &\ \ (1)\ \ f(x)=\begin{cases}sin\ x,\ \ \ \ \ \ \ x \lt 0,\\\\ln(1+x),x \ge 0;\end{cases}\\\\ &\ \ (2)\ \ f(x)=\begin{cases}\frac{x}{1+e^{\frac{1}{x}}},x \neq 0,\\\\0,\ \ \ \ \ \ \ x=0.\end{cases} & \end{aligned} (1) f(x)=⎩⎨⎧sin x, x<0,ln(1+x),x≥0; (2) f(x)=⎩⎨⎧1+ex1x,x=0,0, x=0.
Explain :
( 1 ) f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 = lim x → 0 − s i n x x = 1 , f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + l n ( 1 + x ) x = 1 . because f − ′ ( 0 ) = f + ′ ( 0 ) = 1 , therefore f ′ ( 0 ) There is . ( 2 ) f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 = lim x → 0 − x 1 + e 1 x − 0 x = lim x → 0 − 1 1 + e 1 x = 1 , f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 = lim x → 0 + x 1 + e 1 x − 0 x = lim x → 0 − 1 1 + e 1 x = 0. because f − ′ ( 0 ) ≠ f + ′ ( 0 ) , therefore f ′ ( 0 ) non-existent . \begin{aligned} &\ \ (1)\ f'_-(0)=\lim_{x \rightarrow 0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x \rightarrow 0^-}\frac{sin\ x}{x}=1,f'_+(0)=\lim_{x \rightarrow 0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x \rightarrow 0^+}\frac{ln(1+x)}{x}=1.\\\\ &\ \ \ \ \ \ \ \ because f'_-(0)=f'_+(0)=1, therefore f'(0) There is .\\\\ &\ \ (2)\ f'_-(0)=\lim_{x \rightarrow 0^-}\frac{f(x)-f(0)}{x-0}=\lim_{x \rightarrow 0^-}\frac{\frac{x}{1+e^{\frac{1}{x}}}-0}{x}=\lim_{x \rightarrow 0^-}\frac{1}{1+e^{\frac{1}{x}}}=1,\\\\ &\ \ \ \ \ \ \ \ \ f'_+(0)=\lim_{x \rightarrow 0^+}\frac{f(x)-f(0)}{x-0}=\lim_{x \rightarrow 0^+}\frac{\frac{x}{1+e^{\frac{1}{x}}}-0}{x}=\lim_{x \rightarrow 0^-}\frac{1}{1+e^{\frac{1}{x}}}=0.\\\\ &\ \ \ \ \ \ \ \ \ because f'_-(0) \neq f'_+(0), therefore f'(0) non-existent . & \end{aligned} (1) f−′(0)=x→0−limx−0f(x)−f(0)=x→0−limxsin x=1,f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limxln(1+x)=1. because f−′(0)=f+′(0)=1, therefore f′(0) There is . (2) f−′(0)=x→0−limx−0f(x)−f(0)=x→0−limx1+ex1x−0=x→0−lim1+ex11=1, f+′(0)=x→0+limx−0f(x)−f(0)=x→0+limx1+ex1x−0=x→0−lim1+ex11=0. because f−′(0)=f+′(0), therefore f′(0) non-existent .
7. Discuss functions f ( x ) = { x s i n 1 x , x ≠ 0 , 0 , x = 0. stay x = 0 Continuity and derivability of . \begin{aligned}&7. \ Discuss functions f(x)=\begin{cases}xsin\ \frac{1}{x},x \neq 0,\\\\0,\ \ \ \ \ \ \ \ \ \ x=0.\end{cases} stay x=0 Continuity and derivability of .&\end{aligned} 7. Discuss functions f(x)=⎩⎨⎧xsin x1,x=0,0, x=0. stay x=0 Continuity and derivability of .
Explain :
lim x → 0 f ( x ) = lim x → 0 x s i n 1 x = 0 = f ( 0 ) , therefore f ( x ) stay x = 0 Continuous . f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x − 0 = lim x → 0 x s i n 1 x x = lim x → 0 s i n 1 x , The limit does not exist , therefore f ( x ) stay x = 0 You can't lead . \begin{aligned} &\ \ \lim_{x \rightarrow 0}f(x)=\lim_{x \rightarrow 0}xsin\ \frac{1}{x}=0=f(0), therefore f(x) stay x=0 Continuous .\\\\ &\ \ f'(0)=\lim_{x \rightarrow 0}\frac{f(x)-f(0)}{x-0}=\lim_{x \rightarrow 0}\frac{xsin\ \frac{1}{x}}{x}=\lim_{x \rightarrow 0}sin\ \frac{1}{x}, The limit does not exist , therefore f(x) stay x=0 You can't lead . & \end{aligned} x→0limf(x)=x→0limxsin x1=0=f(0), therefore f(x) stay x=0 Continuous . f′(0)=x→0limx−0f(x)−f(0)=x→0limxxsin x1=x→0limsin x1, The limit does not exist , therefore f(x) stay x=0 You can't lead .
8. Find the derivative of the following function : \begin{aligned}&8. \ Find the derivative of the following function :&\end{aligned} 8. Find the derivative of the following function :
( 1 ) y = a r c s i n ( s i n x ) ; ( 2 ) y = a r c t a n 1 + x 1 − x ; ( 3 ) y = l n t a n x 2 − c o s x ⋅ l n t a n x ; ( 4 ) y = l n ( e x + 1 + e 2 x ) ; ( 5 ) y = x 1 x ( x > 0 ) . \begin{aligned} &\ \ (1)\ \ y=arcsin(sin\ x);\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=arctan\frac{1+x}{1-x};\\\\ &\ \ (3)\ \ y=ln\ tan\ \frac{x}{2}-cos\ x \cdot ln\ tan\ x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=ln(e^x+\sqrt{1+e^{2x}});\\\\ &\ \ (5)\ \ y=x^{\frac{1}{x}}\ (x \gt 0). & \end{aligned} (1) y=arcsin(sin x); (2) y=arctan1−x1+x; (3) y=ln tan 2x−cos x⋅ln tan x; (4) y=ln(ex+1+e2x); (5) y=xx1 (x>0).
Explain :
( 1 ) y ′ = 1 1 − s i n 2 x ⋅ c o s x = c o s x ∣ c o s x ∣ ( 2 ) y ′ = 1 1 + ( 1 + x 1 − x ) 2 ⋅ ( 1 + x 1 − x ) ′ = ( 1 − x ) 2 2 + 2 x 2 ⋅ 2 ( 1 − x ) 2 = 1 1 + x 2 ( 3 ) y ′ = ( l n t a n x 2 ) ′ − ( c o s x ⋅ l n t a n x ) ′ = 1 t a n x 2 ⋅ s e c 2 x 2 ⋅ 1 2 − ( − s i n x ⋅ l n tan x + c o s x ⋅ 1 t a n x ⋅ s e c 2 x ) = 1 s i n x + s i n x ⋅ l n tan x − 1 s i n x = s i n x ⋅ l n t a n x . ( 4 ) y ′ = 1 e x + 1 + e 2 x ⋅ ( e x + 1 + e 2 x ) ′ = 1 e x + 1 + e 2 x ⋅ ( e x + 1 2 1 + e 2 x ⋅ e 2 x ⋅ 2 ) = 1 e x + 1 + e 2 x ⋅ e x ( e x + 1 + e 2 x ) 1 + e 2 x = e x 1 + e 2 x ( 5 ) l n y = l n x x , Seek guidance on both sides , 1 y y ′ = 1 − l n x x 2 , y ′ = x 1 x − 2 ( 1 − l n x ) \begin{aligned} &\ \ (1)\ y'=\frac{1}{\sqrt{1-sin^2\ x}}\cdot cos\ x=\frac{cos\ x}{|cos\ x|}\\\\ &\ \ (2)\ y'=\frac{1}{1+\left(\frac{1+x}{1-x}\right)^2}\cdot \left(\frac{1+x}{1-x}\right)'=\frac{(1-x)^2}{2+2x^2}\cdot \frac{2}{(1-x)^2}=\frac{1}{1+x^2}\\\\ &\ \ (3)\ y'=(ln\ tan\ \frac{x}{2})'-(cos\ x \cdot ln \ tan\ x)'=\frac{1}{tan\ \frac{x}{2}} \cdot sec^2\ \frac{x}{2}\cdot \frac{1}{2}-(-sin\ x \cdot ln \tan\ x+cos\ x \cdot \frac{1}{tan\ x}\ \cdot sec^2\ x)=\\\\ &\ \ \ \ \ \ \ \ \frac{1}{sin\ x}+sin\ x \cdot ln\ \tan\ x-\frac{1}{sin\ x}=sin\ x \cdot ln\ tan\ x.\\\\ &\ \ (4)\ y'=\frac{1}{e^x+\sqrt{1+e^{2x}}}\cdot (e^x+\sqrt{1+e^{2x}})'=\frac{1}{e^x+\sqrt{1+e^{2x}}}\cdot (e^x+\frac{1}{2\sqrt{1+e^{2x}}}\cdot e^{2x} \cdot 2)=\\\\ &\ \ \ \ \ \ \ \ \ \frac{1}{e^x+\sqrt{1+e^{2x}}}\cdot \frac{e^x(e^x+\sqrt{1+e^{2x}})}{\sqrt{1+e^{2x}}}=\frac{e^x}{\sqrt{1+e^{2x}}}\\\\ &\ \ (5)\ ln\ y=\frac{ln\ x}{x}, Seek guidance on both sides ,\frac{1}{y}y'=\frac{1-ln\ x}{x^2},y'=x^{\frac{1}{x}-2}(1-ln\ x) & \end{aligned} (1) y′=1−sin2 x1⋅cos x=∣cos x∣cos x (2) y′=1+(1−x1+x)21⋅(1−x1+x)′=2+2x2(1−x)2⋅(1−x)22=1+x21 (3) y′=(ln tan 2x)′−(cos x⋅ln tan x)′=tan 2x1⋅sec2 2x⋅21−(−sin x⋅lntan x+cos x⋅tan x1 ⋅sec2 x)= sin x1+sin x⋅ln tan x−sin x1=sin x⋅ln tan x. (4) y′=ex+1+e2x1⋅(ex+1+e2x)′=ex+1+e2x1⋅(ex+21+e2x1⋅e2x⋅2)= ex+1+e2x1⋅1+e2xex(ex+1+e2x)=1+e2xex (5) ln y=xln x, Seek guidance on both sides ,y1y′=x21−ln x,y′=xx1−2(1−ln x)
9. Find the derivative of the following function : \begin{aligned}&9. \ Find the derivative of the following function :&\end{aligned} 9. Find the derivative of the following function :
( 1 ) y = c o s 2 x ⋅ l n x ; ( 2 ) y = x 1 − x 2 . \begin{aligned} &\ \ (1)\ \ y=cos^2\ x \cdot ln\ x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=\frac{x}{\sqrt{1-x^2}}. & \end{aligned} (1) y=cos2 x⋅ln x; (2) y=1−x2x.
Explain :
( 1 ) y ′ = ( c o s 2 x ) ′ l n x + c o s 2 x ( l n x ) ′ = − s i n 2 x ⋅ ln x + c o s 2 x x y ′ ′ = ( − s i n 2 x ⋅ l n x ) ′ + ( c o s 2 x x ) ′ = − 2 c o s 2 x ⋅ l n x − s i n 2 x x − x s i n 2 x + c o s 2 x x 2 = − 2 c o s 2 x ⋅ l n x − 2 s i n 2 x x − c o s 2 x x 2 ( 2 ) y ′ = 1 − x 2 + x 2 1 − x 2 1 − x 2 = 1 ( 1 − x 2 ) 3 y ′ ′ = − [ ( 1 − x 2 ) 3 2 ] ′ ( 1 − x 2 ) 3 = 3 x 1 − x 2 ( 1 − x 2 ) 3 = 3 x ( 1 − x 2 ) 5 2 \begin{aligned} &\ \ (1)\ y'=(cos^2\ x)'ln\ x+cos^2\ x(ln\ x)'=-sin\ 2x\cdot \ln\ x+\frac{cos^2\ x}{x}\\\\ &\ \ \ \ \ \ \ \ y''=(-sin\ 2x \cdot ln\ x)'+\left(\frac{cos^2\ x}{x}\right)'=-2cos\ 2x\cdot ln\ x-\frac{sin\ 2x}{x}-\frac{xsin\ 2x+cos^2\ x}{x^2}=\\\\ &\ \ \ \ \ \ \ -2cos\ 2x \cdot ln\ x-\frac{2sin\ 2x}{x}-\frac{cos^2\ x}{x^2}\\\\ &\ \ (2)\ y'=\frac{\sqrt{1-x^2}+\frac{x^2}{\sqrt{1-x^2}}}{1-x^2}=\frac{1}{\sqrt{(1-x^2)^3}}\\\\ &\ \ \ \ \ \ \ y''=\frac{-[(1-x^2)^{\frac{3}{2}}]'}{(1-x^2)^3}=\frac{3x\sqrt{1-x^2}}{(1-x^2)^3}=\frac{3x}{(1-x^2)^{\frac{5}{2}}} & \end{aligned} (1) y′=(cos2 x)′ln x+cos2 x(ln x)′=−sin 2x⋅ln x+xcos2 x y′′=(−sin 2x⋅ln x)′+(xcos2 x)′=−2cos 2x⋅ln x−xsin 2x−x2xsin 2x+cos2 x= −2cos 2x⋅ln x−x2sin 2x−x2cos2 x (2) y′=1−x21−x2+1−x2x2=(1−x2)31 y′′=(1−x2)3−[(1−x2)23]′=(1−x2)33x1−x2=(1−x2)253x
10. Find the n Derivative, : \begin{aligned}&10. \ Find the n Derivative, :&\end{aligned} 10. Find the n Derivative, :
( 1 ) y = 1 + x m ; ( 2 ) y = 1 − x 1 + x . \begin{aligned} &\ \ (1)\ \ y=\sqrt[m]{1+x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=\frac{1-x}{1+x}. & \end{aligned} (1) y=m1+x; (2) y=1+x1−x.
Explain :
( 1 ) y ′ = 1 m ( 1 + x ) 1 m − 1 , y ′ ′ = 1 m ( 1 m − 1 ) ( 1 + x ) 1 m − 2 , ⋅ ⋅ ⋅ , y ( n ) = 1 m ( 1 m − 1 ) ⋅ ⋅ ⋅ ( 1 m − n + 1 ) ( 1 + x ) 1 m − n ( 2 ) because ( 1 1 + x ) ( n ) = ( − 1 ) n n ! ( 1 + x ) n + 1 , therefore y ( n ) = ( 1 − x 1 + x ) ( n ) = ( − 1 + 2 x + 1 ) ( n ) = 2 ⋅ ( − 1 ) n n ! ( 1 + x ) n + 1 \begin{aligned} &\ \ (1)\ y'=\frac{1}{m}(1+x)^{\frac{1}{m}-1},y''=\frac{1}{m}\left(\frac{1}{m}-1\right)(1+x)^{\frac{1}{m}-2},\cdot\cdot\cdot,y^{(n)}=\frac{1}{m}\left(\frac{1}{m}-1\right)\cdot\cdot\cdot\left(\frac{1}{m}-n+1\right)(1+x)^{\frac{1}{m}-n}\\\\ &\ \ (2)\ because \left(\frac{1}{1+x}\right)^{(n)}=\frac{(-1)^nn!}{(1+x)^{n+1}}, therefore y^{(n)}=\left(\frac{1-x}{1+x}\right)^{(n)}=\left(-1+\frac{2}{x+1}\right)^{(n)}=\frac{2\cdot (-1)^nn!}{(1+x)^{n+1}} & \end{aligned} (1) y′=m1(1+x)m1−1,y′′=m1(m1−1)(1+x)m1−2,⋅⋅⋅,y(n)=m1(m1−1)⋅⋅⋅(m1−n+1)(1+x)m1−n (2) because (1+x1)(n)=(1+x)n+1(−1)nn!, therefore y(n)=(1+x1−x)(n)=(−1+x+12)(n)=(1+x)n+12⋅(−1)nn!
11. Let's set the function y = y ( x ) By the equation e y + x y = e Determined , seek y ′ ′ ( 0 ) . \begin{aligned}&11. \ Let's set the function y=y(x) By the equation e^y+xy=e Determined , seek y''(0).&\end{aligned} 11. Let's set the function y=y(x) By the equation ey+xy=e Determined , seek y′′(0).
Explain :
The two sides of the equation are right x Derivation , have to e y y ′ + y + x y ′ = 0 . because x = 0 , Put it into the equation e y + x y = e , have to y = 1 , then x = 0 , y = 1 Put it into the equation e y y ′ + y + x y ′ = 0 , have to y ‘ = − 1 e , For the equation e y y ′ + y + x y ′ = 0 Seek guidance on both sides , have to e y y ′ 2 + e y y ′ ′ + y ′ + y ′ + x y ′ ′ = 0 . take x = 0 , y = 1 , y ’ = − 1 e Put it into the equation e y y ′ 2 + e y y ′ ′ + y ′ + y ′ + x y ′ ′ = 0 , have to y ′ ′ ( 0 ) = 1 e 2 \begin{aligned} &\ \ The two sides of the equation are right x Derivation , have to e^yy'+y+xy'=0. because x=0, Put it into the equation e^y+xy=e, have to y=1,\\\\ &\ \ then x=0,y=1 Put it into the equation e^yy'+y+xy'=0, have to y‘=-\frac{1}{e}, For the equation e^yy'+y+xy'=0 Seek guidance on both sides ,\\\\ &\ \ have to e^yy'^2+e^yy''+y'+y'+xy''=0. take x=0,y=1,y’=-\frac{1}{e} Put it into the equation e^yy'^2+e^yy''+y'+y'+xy''=0,\\\\ &\ \ have to y''(0)=\frac{1}{e^2}\\\\ &\ \ & \end{aligned} The two sides of the equation are right x Derivation , have to eyy′+y+xy′=0. because x=0, Put it into the equation ey+xy=e, have to y=1, then x=0,y=1 Put it into the equation eyy′+y+xy′=0, have to y‘=−e1, For the equation eyy′+y+xy′=0 Seek guidance on both sides , have to eyy′2+eyy′′+y′+y′+xy′′=0. take x=0,y=1,y’=−e1 Put it into the equation eyy′2+eyy′′+y′+y′+xy′′=0, have to y′′(0)=e21
12. Find the first derivative of the following function determined by the parametric equation d y d x And the second derivative d 2 y d x 2 : \begin{aligned}&12. \ Find the first derivative of the following function determined by the parametric equation \frac{dy}{dx} And the second derivative \frac{d^2y}{dx^2}:&\end{aligned} 12. Find the first derivative of the following function determined by the parametric equation dxdy And the second derivative dx2d2y:
( 1 ) { x = a c o s 3 θ , y = a s i n 3 θ ; ( 2 ) { x = l n 1 + t 2 , y = a r c t a n t . \begin{aligned} &\ \ (1)\ \ \begin{cases}x=acos^3\ \theta,\\\\y=asin^3\ \theta;\end{cases}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \begin{cases}x=ln\ \sqrt{1+t^2},\\\\y=arctan\ t.\end{cases} & \end{aligned} (1) ⎩⎨⎧x=acos3 θ,y=asin3 θ; (2) ⎩⎨⎧x=ln 1+t2,y=arctan t.
Explain :
( 1 ) d y d x = d y d θ d x d θ = 3 a s i n 2 θ c o s θ 3 a c o s 2 θ ( − s i n θ ) = − t a n θ d 2 y d x 2 = d d θ ( d y d x ) d x d θ = − s e c 2 θ − 3 a c o s 2 θ s i n θ = 1 3 a s e c 4 θ c s c θ ( 2 ) d y d x = d y d t d x d t = 1 1 + t 2 t 1 + t 2 = 1 t d 2 y d x 2 = d d t ( d y d x ) d x d t = − 1 t 2 t 1 + t 2 = − 1 + t 2 t 3 \begin{aligned} &\ \ (1)\ \frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}=\frac{3asin^2\theta cos\ \theta}{3acos^2\theta(-sin\ \theta)}=-tan\ \theta\\\\ &\ \ \ \ \ \ \ \ \frac{d^2y}{dx^2}=\frac{\frac{d}{d\theta}\left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}}=\frac{-sec^2\theta}{-3acos^2\theta sin\ \theta}=\frac{1}{3a}sec^4\theta csc\ \theta\\\\ &\ \ (2)\ \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\frac{1}{1+t^2}}{\frac{t}{1+t^2}}=\frac{1}{t}\\\\ &\ \ \ \ \ \ \ \ \frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}=\frac{-\frac{1}{t^2}}{\frac{t}{1+t^2}}=-\frac{1+t^2}{t^3} & \end{aligned} (1) dxdy=dθdxdθdy=3acos2θ(−sin θ)3asin2θcos θ=−tan θ dx2d2y=dθdxdθd(dxdy)=−3acos2θsin θ−sec2θ=3a1sec4θcsc θ (2) dxdy=dtdxdtdy=1+t2t1+t21=t1 dx2d2y=dtdxdtd(dxdy)=1+t2t−t21=−t31+t2
13. Find the curve { x = 2 e t , y = e − t stay t = 0 Tangent equation and normal equation at corresponding points . \begin{aligned}&13. \ Find the curve \begin{cases}x=2e^t,\\\\y=e^{-t}\end{cases} stay t=0 Tangent equation and normal equation at corresponding points .&\end{aligned} 13. Find the curve ⎩⎨⎧x=2et,y=e−t stay t=0 Tangent equation and normal equation at corresponding points .
Explain :
d y d x = d y d t d x d t = − e − t 2 e t = − 1 2 e 2 t , When t = 0 when , y ′ = − 1 2 , t = 0 The corresponding point is ( 2 , 1 ) , So the curve is at point ( 2 , 1 ) The tangent equation at is y − 1 = − 1 2 ( x − 2 ) , namely x + 2 y − 4 = 0 . The normal equation is y − 1 = 2 ( x − 2 ) , namely 2 x − y − 3 = 0. \begin{aligned} &\ \ \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-e^{-t}}{2e^t}=-\frac{1}{2e^{2t}}, When t=0 when ,y'=-\frac{1}{2},t=0 The corresponding point is (2,\ 1), So the curve is at point (2,\ 1) The tangent equation at is \\\\ &\ \ y-1=-\frac{1}{2}(x-2), namely x+2y-4=0. The normal equation is y-1=2(x-2), namely 2x-y-3=0. & \end{aligned} dxdy=dtdxdtdy=2et−e−t=−2e2t1, When t=0 when ,y′=−21,t=0 The corresponding point is (2, 1), So the curve is at point (2, 1) The tangent equation at is y−1=−21(x−2), namely x+2y−4=0. The normal equation is y−1=2(x−2), namely 2x−y−3=0.
14. It is known that f ( x ) Yes, the period is 5 The continuous function of , It's in x = 0 Satisfy the relation in a neighborhood of f ( 1 + s i n x ) − 3 f ( 1 − s i n x ) = 8 x + o ( x ) , And f ( x ) stay x = 1 Place can lead , Find the curve y = f ( x ) At point ( 6 , f ( 6 ) ) The tangent equation at . \begin{aligned}&14. \ It is known that f(x) Yes, the period is 5 The continuous function of , It's in x=0 Satisfy the relation in a neighborhood of f(1+sin\ x)-3f(1-sin\ x)=8x+o(x),\\\\&\ \ \ \ \ \ And f(x) stay x=1 Place can lead , Find the curve y=f(x) At point (6, \ f(6)) The tangent equation at .&\end{aligned} 14. It is known that f(x) Yes, the period is 5 The continuous function of , It's in x=0 Satisfy the relation in a neighborhood of f(1+sin x)−3f(1−sin x)=8x+o(x), And f(x) stay x=1 Place can lead , Find the curve y=f(x) At point (6, f(6)) The tangent equation at .
Explain :
because f ( x ) continuity , The two ends of the relationship are x → 0 when , Take the limit f ( 1 ) − 3 f ( 1 ) = 0 , f ( 1 ) = 0 . because lim x → 0 f ( 1 + s i n x ) − 3 f ( 1 − s i n x ) x = 8 , and lim x → 0 f ( 1 + s i n x ) − 3 f ( 1 − s i n x ) x = lim x → 0 f ( 1 + s i n x ) − 3 f ( 1 − s i n x ) s i n x ⋅ lim x → 0 s i n x x Make t = s i n x , lim t → 0 f ( 1 + t ) − 3 f ( 1 − t ) t = lim t → 0 f ( 1 + t ) − f ( 1 ) t + 3 lim t → 0 f ( 1 − t ) − f ( 1 ) − t = 4 f ′ ( 1 ) , therefore f ′ ( 1 ) = 2 . because f ( x + 5 ) = f ( x ) , therefore f ( 6 ) = f ( 1 ) = 0 . f ′ ( 6 ) = lim x → 0 f ( 6 + x ) − f ( 6 ) x = lim x → 0 f ( 1 + x ) − f ( 1 ) x = f ′ ( 1 ) = 2 . curve y = f ( x ) At point ( 6 , f ( 6 ) ) The tangent equation at is y − 0 = 2 ( x − 6 ) , namely 2 x − y − 12 = 0. \begin{aligned} &\ \ because f(x) continuity , The two ends of the relationship are x \rightarrow 0 when , Take the limit f(1)-3f(1)=0,f(1)=0.\\\\ &\ \ because \lim_{x \rightarrow 0}\frac{f(1+sin\ x)-3f(1-sin\ x)}{x}=8,\\\\ &\ \ and \lim_{x \rightarrow 0}\frac{f(1+sin\ x)-3f(1-sin\ x)}{x}=\lim_{x \rightarrow 0}\frac{f(1+sin\ x)-3f(1-sin\ x)}{sin\ x}\cdot \lim_{x \rightarrow 0}\frac{sin\ x}{x}\\\\ &\ \ Make t=sin\ x,\lim_{t \rightarrow 0}\frac{f(1+t)-3f(1-t)}{t}=\lim_{t \rightarrow 0}\frac{f(1+t)-f(1)}{t}+3\lim_{t \rightarrow 0}\frac{f(1-t)-f(1)}{-t}=4f'(1), therefore f'(1)=2.\\\\ &\ \ because f(x+5)=f(x), therefore f(6)=f(1)=0.f'(6)=\lim_{x \rightarrow 0}\frac{f(6+x)-f(6)}{x}=\lim_{x \rightarrow 0}\frac{f(1+x)-f(1)}{x}=f'(1)=2.\\\\ &\ \ curve y=f(x) At point (6, \ f(6)) The tangent equation at is y-0=2(x-6), namely 2x-y-12=0. & \end{aligned} because f(x) continuity , The two ends of the relationship are x→0 when , Take the limit f(1)−3f(1)=0,f(1)=0. because x→0limxf(1+sin x)−3f(1−sin x)=8, and x→0limxf(1+sin x)−3f(1−sin x)=x→0limsin xf(1+sin x)−3f(1−sin x)⋅x→0limxsin x Make t=sin x,t→0limtf(1+t)−3f(1−t)=t→0limtf(1+t)−f(1)+3t→0lim−tf(1−t)−f(1)=4f′(1), therefore f′(1)=2. because f(x+5)=f(x), therefore f(6)=f(1)=0.f′(6)=x→0limxf(6+x)−f(6)=x→0limxf(1+x)−f(1)=f′(1)=2. curve y=f(x) At point (6, f(6)) The tangent equation at is y−0=2(x−6), namely 2x−y−12=0.
15. When height H When the plane flying horizontally begins to descend towards the airport runway , Pictured 2 − 16 The horizontal ground distance shown from the aircraft to the airport is L . Suppose the path of the aircraft descending is a cubic function y = a x 3 + b x 2 + c x + d The graphic , among y ∣ x = − L = H , y ∣ x = 0 = 0 . Try to determine the landing path of the aircraft . \begin{aligned}&15. \ When height H When the plane flying horizontally begins to descend towards the airport runway , Pictured 2-16 The horizontal ground distance shown from the aircraft to the airport is L.\\\\&\ \ \ \ \ \ Suppose the path of the aircraft descending is a cubic function y=ax^3+bx^2+cx+d The graphic , among y|_{x=-L}=H,y|_{x=0}=0.\\\\&\ \ \ \ \ \ Try to determine the landing path of the aircraft .&\end{aligned} 15. When height H When the plane flying horizontally begins to descend towards the airport runway , Pictured 2−16 The horizontal ground distance shown from the aircraft to the airport is L. Suppose the path of the aircraft descending is a cubic function y=ax3+bx2+cx+d The graphic , among y∣x=−L=H,y∣x=0=0. Try to determine the landing path of the aircraft .

Explain :
because y ∣ x = 0 = 0 ⇒ d = 0 , y ∣ x = − L = H ⇒ − a L 3 + b L 2 − c L = H . To make the plane land smoothly , Need to meet y ′ ∣ x = 0 = 0 ⇒ c = 0 , y ′ ∣ x = − L = 0 ⇒ 3 a L 2 − 2 b L = 0. To solve the equation , a = 2 H L 3 , b = 3 H L 2 , So the landing path of the plane is y = H [ 2 ( x L ) 3 + 3 ( x L ) 2 ] \begin{aligned} &\ \ because y|_{x=0}=0 \Rightarrow d=0,y|_{x=-L}=H \Rightarrow -aL^3+bL^2-cL=H.\\\\ &\ \ To make the plane land smoothly , Need to meet y'|_{x=0}=0 \Rightarrow c=0,y'|_{x=-L}=0 \Rightarrow 3aL^2-2bL=0.\\\\ &\ \ To solve the equation ,a=\frac{2H}{L^3},b=\frac{3H}{L^2}, So the landing path of the plane is y=H\left[2\left(\frac{x}{L}\right)^3+3\left(\frac{x}{L}\right)^2\right] & \end{aligned} because y∣x=0=0⇒d=0,y∣x=−L=H⇒−aL3+bL2−cL=H. To make the plane land smoothly , Need to meet y′∣x=0=0⇒c=0,y′∣x=−L=0⇒3aL2−2bL=0. To solve the equation ,a=L32H,b=L23H, So the landing path of the plane is y=H[2(Lx)3+3(Lx)2]
16. Jia Chuanyi 6 k m / h Drive east at a rate of , B ship with 8 k m / h Driving southward at a rate of . At twelve o'clock sharp at noon , Ship B is located to the north of ship a 16 k m It's about . Ask the speed at which the two ships leave at exactly 1:00 p.m ? \begin{aligned}&16. \ Jia Chuanyi 6\ km/h Drive east at a rate of , B ship with 8\ km/h Driving southward at a rate of . At twelve o'clock sharp at noon ,\\\\&\ \ \ \ \ \ Ship B is located to the north of ship a 16\ km It's about . Ask the speed at which the two ships leave at exactly 1:00 p.m ?&\end{aligned} 16. Jia Chuanyi 6 km/h Drive east at a rate of , B ship with 8 km/h Driving southward at a rate of . At twelve o'clock sharp at noon , Ship B is located to the north of ship a 16 km It's about . Ask the speed at which the two ships leave at exactly 1:00 p.m ?
Explain :
Set from noon 12 It starts at o'clock sharp , after t Hours , The distance between the two ships is s = ( 16 − 8 t ) 2 + ( 6 t ) 2 , rate v = d s d t = 2 ( 16 − 8 t ) ⋅ ( − 8 ) + 72 t 2 ( 16 − 8 t ) 2 + ( 6 t ) 2 When t = 1 when , The rate at which two ships separate v = − 128 + 72 20 = − 2.8 k m / h \begin{aligned} &\ \ Set from noon 12 It starts at o'clock sharp , after t Hours , The distance between the two ships is s=\sqrt{(16-8t)^2+(6t)^2}, rate v=\frac{ds}{dt}=\frac{2(16-8t)\cdot (-8)+72t}{2\sqrt{(16-8t)^2+(6t)^2}}\\\\ &\ \ When t=1 when , The rate at which two ships separate v=\frac{-128+72}{20}=-2.8\ km/h & \end{aligned} Set from noon 12 It starts at o'clock sharp , after t Hours , The distance between the two ships is s=(16−8t)2+(6t)2, rate v=dtds=2(16−8t)2+(6t)22(16−8t)⋅(−8)+72t When t=1 when , The rate at which two ships separate v=20−128+72=−2.8 km/h
17. Use the differential of the function to replace the increment of the function to find 1.02 3 Approximate value . \begin{aligned}&17. \ Use the differential of the function to replace the increment of the function to find \sqrt[3]{1.02} Approximate value .&\end{aligned} 17. Use the differential of the function to replace the increment of the function to find 31.02 Approximate value .
Explain :
because 1 + x 3 ≈ 1 + 1 3 x , take x = 0.02 , be 1.02 3 ≈ 1 + 1 3 × ( 0.02 ) = 1.007 \begin{aligned} &\ \ because \sqrt[3]{1+x} \approx 1+\frac{1}{3}x, take x=0.02, be \sqrt[3]{1.02} \approx 1+\frac{1}{3} \times (0.02)=1.007 & \end{aligned} because 31+x≈1+31x, take x=0.02, be 31.02≈1+31×(0.02)=1.007
18. The vibration period of a simple pendulum is known T = 2 π l g , among g = 980 c m / s 2 , l For pendulum length ( Unit is c m ) . Let the length of the original pendulum be 20 c m , To make the cycle T increase 0.05 s , The length of the pendulum needs to be lengthened ? \begin{aligned}&18. \ The vibration period of a simple pendulum is known T=2\pi \sqrt{\frac{l}{g}}, among g=980\ cm/s^2,l For pendulum length ( Unit is cm).\\\\&\ \ \ \ \ \ Let the length of the original pendulum be 20\ cm, To make the cycle T increase 0.05s, The length of the pendulum needs to be lengthened ?&\end{aligned} 18. The vibration period of a simple pendulum is known T=2πgl, among g=980 cm/s2,l For pendulum length ( Unit is cm). Let the length of the original pendulum be 20 cm, To make the cycle T increase 0.05s, The length of the pendulum needs to be lengthened ?
Explain :
from Δ T ≈ d T = π g l Δ l , have to Δ l = g l π d T ≈ g l π Δ T , When l = 20 when , Δ l ≈ 980 × 20 3.14 × 0.05 ≈ 2.23 c m , The length of the pendulum needs to be lengthened 2.23 c m . \begin{aligned} &\ \ from \Delta T \approx dT = \frac{\pi}{\sqrt{gl}}\Delta l, have to \Delta l=\frac{\sqrt{gl}}{\pi}dT \approx \frac{\sqrt{gl}}{\pi}\Delta T, When l=20 when ,\Delta l \approx \frac{\sqrt{980 \times 20}}{3.14} \times 0.05 \approx 2.23\ cm,\\\\ &\ \ The length of the pendulum needs to be lengthened 2.23cm. & \end{aligned} from ΔT≈dT=glπΔl, have to Δl=πgldT≈πglΔT, When l=20 when ,Δl≈3.14980×20×0.05≈2.23 cm, The length of the pendulum needs to be lengthened 2.23cm.
边栏推荐
- 20220725 compensator in automatic control principle
- 针对前面文章的整改思路
- IR tool in JIT and download, compile and use of jitwatch
- Common CMD instructions
- <二> objectARX开发:创建和编辑基本图形对象
- buuReserve(4)
- shape 和 size() 区别
- [database] CTE (common table expression)
- Rectification ideas for the previous article
- Do you know what "parts" MySQL contains?
猜你喜欢
随机推荐
Flame diagram analysis Flink backpressure
Exclusive lock
如何删除语句审计日志?
Linux c SQLite database usage
Precious metal knowledge: lethal short-term secret script
MySql 执行计划
123123123
The results of the soft test can be checked, and the entry to query the results of the soft test has been opened in the first half of 2022
Realize the full link grayscale based on Apache APIs IX through MSE
Manifest merger failed with multiple errors, see logs
JIT中的IR工具与JITWatch的下载,编译及使用
XSS-labs(1-10)闯关详解
Overview of new features of es11, ES12 and es13
Queue assistant | product update log in June 2022
Drools(2):Drools快速入门
What are the ways to open the JDBC log of Youxuan database
20220725 convolution in automatic control principle
Drools (4): drools basic syntax (2)
Is the passenger flow always low? There is something wrong with the location of your store!
Intention lock







![Rust language - slice type (&[u8])](/img/d1/68c73c8b34b848212083c08df3137f.png)

