当前位置:网站首页>SCNet: Semantic Consistency Networks for 3D Object Detection
SCNet: Semantic Consistency Networks for 3D Object Detection
2022-08-11 06:16:00 【zhSunw】
The framework uses VoteNet and PointNet++ as the pipeline.
- Semantic Voting: Semantic information is also used as information for each point voting (prediction)

- The two MLP branches complete the voting of normal VoteNet (xyz coordinates and feature features) and Semantic Vote respectively
- Combines the two branch predictions at each point
- Loss Function

Set hyperparameter weights for eachTask loss is weighted - Semantic Consistency Mechanism and Loss

as aboveAs shown, take the center of each BBox as the center of the sphere, and set the point within the sphere with a radius of 0.2m to calculate the semantic consistency loss:
pi is the predicted probability of BBox, sj is the semantic information of each query point.
The model can learn the relationship between geometric information and semantic information, making the prediction of BBOX more accurate.
边栏推荐
猜你喜欢
随机推荐
GBase 8s中IO读写方法
【docker-compose】mysql安装
梅科尔工作室-Pr第二次培训笔记(基本剪辑操作和导出)
Thread Handler
安全帽识别系统-为安全生产保驾护航
Reconstruction and Synthesis of Lidar Point Clouds of Spray
慢查询语句的优化思路
>>开发工具:IDEA格式化代码无效
梅科尔工作室-DjangoWeb 应用框架+MySQL数据库第五次培训
mysq基础语句+高级操作(学这篇就够了)
安全帽佩戴识别系统介绍
LVS负载群集--DR模式
梅科尔工作室-华为云ModelArts第一次培训
OpenPCDet安装最新版:spconv一步到位
软件架构之--MVC、MVP、MVVM
四大组件之一BroadCast(其一)
跳转到微信小程序方法
更新GreenDAO实体类导致的编译错误
LAMP架构介绍及配置
安全帽识别算法









