当前位置:网站首页>深度学习基本概念
深度学习基本概念
2022-07-31 11:53:00 【sweetheart7-7】
Liner Model 太过简单,不能拟合复杂的关系
可能出现如下情况:
如何写更复杂的有未知参数的函数?
红色function 可以看作 一个常数 + 一群蓝色的function
曲线也可以通过取适当的点然后把这些点连接起来形成一个 Piecewise Liner(分段) 的 Curves,所以可以通过足够多的 蓝色的 function 加起来形成任何的曲线。
通过 sigmoid function 来逼近 蓝色的 function
sigmoid Function:S 形的 function
y = c 1 1 + e − ( b + w x 1 ) y = c \frac{1}{1 + e^{-(b+wx_1)}} y=c1+e−(b+wx1)1
= c s i g m o i d ( b + w x 1 ) = c ~sigmoid(b+wx_1) =c sigmoid(b+wx1)
当 w w w 为正时, x 1 x_1 x1 趋近于 ∞ 时,sigmoid 趋近于 c c c, w w w 为负时,…,sigmoid 趋近于 0 0 0。
通过调整 w w w、 b b b 和 c c c 来得到各种形状的 sigmoid function 来拟合各种蓝色的 function。
所以 0、1、2、3 这 4 条蓝色的 function 都可以用 c s i g m o i d ( b + w x 1 ) c sigmoid(b + wx_1) csigmoid(b+wx1) 来表示,只是对应的 c c c、 w w w 和 b b b 不同,所以红色的 function y y y 就可以用以下形式表示:
所以可以通过 调整 c i c_i ci、 b i b_i bi 和 w i w_i wi 来拟合各种各样曲线的 function
有弹性的有未知参数 function
从 线性的 y = b + w x 1 y=b + wx_1 y=b+wx1
推广到 分段 曲线 function
y = b + ∑ i c i s i g m o i d ( b i + w i + x 1 ) y = b + \sum_{i}c_i~sigmoid(b_i+w_i+x_1) y=b+∑ici sigmoid(bi+wi+x1)
这里只有 x 1 x_1 x1 代表只能通过当前一条数据结果来预测下一个结果。
而 在上一个 blog 最后 推广到可能具有周期性,所以可以通过 多个 feature 来改造函数,然后再对具有多个 feature 的函数进行推广,就有
y = b + ∑ j w j x j y = b + \sum_{j}w_jx_j y=b+∑jwjxj 推广为
y = b + ∑ i c i s i g m o i d ( b i + ∑ j w i j x j ) y = b + \sum_{i}c_i~sigmoid(b_i+\sum_{j}w_{ij}x_j) y=b+∑ici sigmoid(bi+∑jwijxj)
相当于从多个 feature 与 y y y 有一个线性关系推广为多个 feature 与 y y y 有一个曲线关系
i i i 代表多个 s i g m o i d 函数 sigmoid函数 sigmoid函数,而 j j j 代表多个feature
w i j w_{ij} wij 表示 再 第 i i i 个 sigmoid 里面乘 给 第 j j j 个 feature 的 w e i g h t weight weight
可以用以下向量与矩阵关系表示这个乘法关系
所以 a 1 = s i g m o i d ( r 1 ) = 1 1 + e − r 1 a_1 = sigmoid(r_1) = \frac{1}{1+e^{-r_{1}}} a1=sigmoid(r1)=1+e−r11
所以用线性代数表示为:
将未知参数 W W W、 b 向量 b向量 b向量、 C T 向量 C^T向量 CT向量、 b 常数 b常数 b常数展开成 θ θ θ 向量
这样就完成了 ML 的第一步
Loss 还是同样的方法,带入一组 θ θ θ 然后求得 y y y 并且求与 y ^ \hat{y} y^ 的差值,来判断这组 θ θ θ 的好坏。
第三步 Optimization 的方法也没有变化
对所有的 θ i θ_i θi 求 微分,然后得到一个向量 g g g
g g g 就是 gradient
在实际的程序中,需要把大 data 随机分成多个 batch,然后对每一个 batch 进行计算 g g g,更新 θ θ θ(一个 epoch),每一次更新参数(一个batch)叫做一次 update
batchsize 也是 hyperparameter
通过 Relu 来逼近 蓝色的 function
需要先用 Relu 拟合 Hard sigmoid
sigmoid 与 Relu 统称为 activation function
我们可以重复多次 进行如下扩展:
多个 layer
边栏推荐
猜你喜欢
502 bad gateway原因、解决方法
5 个开源的 Rust Web 开发框架,你选择哪个?
Docker practical experience: Deploy mysql8 master-slave replication on Docker
Read through the interface to call the artifact RestTemplate
cesium-Web网页优化进阶
IDEA 配置方法注释自动参数
数据持久化技术——MP
音视频基础
Docker installs canal and mysql for simple testing and achieves cache consistency between redis and mysql
Power BI----几个常用的分析方法和相适应的视觉对象
随机推荐
最新MySql安装教学,非常详细
学习爬虫之Scrapy框架学习(1)---Scrapy框架初学习及豆瓣top250电影信息获取的实战!
Use Excel to read data exposed by SAP ABAP CDS View through ODBC
[Virtualization ecological platform] Raspberry Pi installation virtualization platform operation process
mysql automatically adds creation time and update time
Different lower_case_table_names settings for server ('1') and data dictionary ('0') solution
LeetCode - 025. 链表中的两数相加
最近两个月谷歌 ad 掉的厉害
mpu9150(driverack pa简明教程)
R 语言data.frame 中的另一行中减去一行
Read through the interface to call the artifact RestTemplate
线程池 ThreadPoolExecutor 详解
MySQL模糊查询性能优化
在 Excel 里使用 ODBC 读取 SAP BTP 平台上 CDS view 的数据
ESP8266-Arduino编程实例-PIR(被动红外)传感器驱动
Docker installs canal and mysql for simple testing and achieves cache consistency between redis and mysql
The item 'node.exe' was not recognized as the name of a cmdlet, function, script file, or runnable program.
Cloudera Manager —— 端到端的企业数据中心管理工具
才22岁!这位'00后'博士拟任职985高校!
分布式事务Seata详细使用教程