当前位置:网站首页>[Deep Learning 21-Day Learning Challenge] 3. Use a self-made dataset - Convolutional Neural Network (CNN) Weather Recognition

[Deep Learning 21-Day Learning Challenge] 3. Use a self-made dataset - Convolutional Neural Network (CNN) Weather Recognition

2022-08-04 06:06:00 Live up to [email protected]

活动地址:CSDN21天学习挑战赛

through the first two lessons,Plus a private foundation,The basics of drawing a tiger according to a cat are mastered卷积神经网络-CNNThe basic method of building a model.

之前使用的,All use off-the-shelf datasets,想想,If you really need to apply in the future,肯定需要使用自制数据集来训练模型,刚好k同学啊老师,Such a class was arranged,direct course.

Will learn now总结如下:(The complete code is attached


1、数据分析

Data downloaded from the teacher,weather_photosThere are four categories under the folder(四个目录):

  • cloudy (阴天/多云) :300张图片
  • rain(雨天):215张图片
  • shine (阳光明媚):253张图片
  • sunrise(日出/朝霞):357张图片

图片都是jpg格式

在这里插入图片描述
同时,也可以看到,data picture尺寸各异.
在这里插入图片描述

通过分析,可知,在使用数据集之前,At least do it in advance三件事

  • 加载数据
  • 统一尺寸
  • 分配标签

2、加载数据

data_dir = "./weather_photos/"                     # 路径变量
data_dir = pathlib.Path(data_dir)                  # 构造pathlib模块下的Path对象
image_count = len(list(data_dir.glob('*/*.jpg')))  # 使用Path对象glob方法获取所有jpg格式图片
print("图片总数为:",image_count)

在这里插入图片描述

  • I put it in the same directory as the program,所以路径是"./weather_photos/",You can also base on the actual path,如:data_dir = "D:/datasets/weather_photos/"
  • 更多用法,Make up for it yourself路径处理库pathlib使用详解

显示图片:

roses = list(data_dir.glob('sunrise/*.jpg'))  # 使用Path对象glob方法获取sunrise目录下所有jpg格式图片
PIL.Image.open(str(roses[6]))                 #显示一张图片

在这里插入图片描述

3、数据预处理

3.1、预处理

First define a few important variables:

batch_size = 32
img_height = 180
img_width = 180
  • batch_size:深度学习,The data is fed into the neural network in batches,所以,我们来定义,How many pieces of data per batch
  • img_height:定义图片高度,之前说过,Self-made data images vary in size,所以,Let's unify the images
  • img_width:定义图片宽度,之前说过,Self-made data images vary in size,所以,Let's unify the images

使用: tf.keras.preprocessing.image_dataset_from_directory将文件夹中的数据加载到tf.data.Dataset中,And the loading will disrupt the data at the same time

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,                     # The variables defined above
    validation_split=0.2,         # 保留20%当做测试集
    subset="training",
    seed=123,
    image_size=(img_height, img_width),# The variables defined above
    batch_size=batch_size)             # The variables defined above

参数

  • directory: 数据所在目录.
  • validation_split: 0和1之间的数,可保留一部分数据用于验证.如:0.2=20%
  • subset: trainingvalidation.仅在设置validation_split时使用.
  • image_size:从磁盘读取数据后将其重新调整大小.
  • batch_size: 数据批次的大小.默认值:32
    后调用class_names将返回以目录同名的类名
class_names = train_ds.class_names
print(class_names)

在这里插入图片描述

3.2、可视化

plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")

在这里插入图片描述

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

在这里插入图片描述

  • image_batch: (32, 180, 180, 3) 第一个32is the batch size,180is our modified width and height,3是RGB三个通道
  • labels_batch:(32,) 一维,32个标签

3.3、配置数据集

AUTOTUNE = tf.data.AUTOTUNE                                         
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) 
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)  # 
  • shuffle:数据乱序
  • prefetch:Prefetching data speeds up operations
  • cache:The dataset is cached in memory,加速

4、构建CNN网络

我们之前学习的,The input dataset shapes are both(28, 28, 1),也就是说,28*28的图像,只有一个颜色通道(灰度)

今天的数据,明显是180*180的图片,并且是RGB三个维度

So we need to define the data shape when declaring the first layer,参数:input_shape

num_classes = 4 
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3 
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
  • 关于model.summary()打印形状,可以看这个
  • layers.Dropout(0.4) The role is to prevent overfitting,提高模型的泛化能力.什么是过拟合
  • 关于DropoutFor more information on layers, please refer to the article:https://mtyjkh.blog.csdn.net/article/details/115826689
    在这里插入图片描述

5、配置模型

opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

这里没什么好说的,和之前用到的损失函数优化器一样

使用:learning_rate=0.001is to set the learning rate

  • sgd默认为0.01
  • adam默认为0.001

6、训练模型

epochs = 10

history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
  • validation_data:Specify test set data

  • epochs :训练迭代次数
    在这里插入图片描述
    输出说明

  • loss:训练集损失值

  • accuracy:训练集准确率

  • val_loss:测试集损失值

  • val_accruacy:测试集准确率

7、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']


epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

  • history :Data returned from training,字典类型,字段:accuracy、loss、val_loss、val_accuracy

8、完整源码

import matplotlib.pyplot as plt
import os,PIL
# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)
# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)
from tensorflow import keras
from tensorflow.keras import layers,models
import pathlib
data_dir = "./weather_photos/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))
batch_size = 32
img_height = 180
img_width = 180
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)
plt.figure(figsize=(20, 10))

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
# AUTOTUNE = tf.data.AUTOTUNE
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
num_classes = 4
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3 
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
epochs = 10

history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

学习日记

1,学习知识点

a、Basic usage of homemade datasets
b、pathlib模块的基本使用
c、tf.keras.preprocessing.image_dataset_from_directory基本使用方法

2,学习遇到的问题

继续啃西瓜书,恶补基础

原网站

版权声明
本文为[Live up to [email protected]]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040525326846.html