当前位置:网站首页>torch.utils.data.DataLoader()详解【Pytorch入门手册】
torch.utils.data.DataLoader()详解【Pytorch入门手册】
2022-06-10 15:34:00 【K同学啊】
函数原型
DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, *, prefetch_factor=2,
persistent_workers=False)
功能
根据自定义的格式将数据封装成Tensor。
参数说明
dataset (Dataset)– dataset from which to load the data.
要从中加载数据的数据集。batch_size (int, optional)– how many samples per batch to load (default: 1).
每批次要装载多少样品shuffle (bool, optional)– set to True to have the data reshuffled at every epoch (default: False).
设置为True以使数据在每个时期都重新洗牌sampler (Sampler or Iterable, optional)– defines the strategy to draw samples from the dataset. Can be any Iterable with len implemented. If specified, shuffle must not be specified.
定义从数据集中抽取样本的策略batch_sampler (Sampler or Iterable, optional)– like sampler, but returns a batch of indices at a time. Mutually exclusive with batch_size, shuffle, sampler, and drop_last.
类似于采样器,但一次返回一批索引。 与batch_size,shuffle,sampler和drop_last互斥。num_workers (int, optional)– how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. (default: 0)
多少个子流程用于数据加载。 0表示将在主进程中加载数据。 (默认值:0)collate_fn (callable, optional)– merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset.
合并样本列表以形成张量的小批量。pin_memory (bool, optional)– If True, the data loader will copy Tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your collate_fn returns a batch that is a custom type.
如果为True,则数据加载器在将张量返回之前将其复制到CUDA固定的内存中。 如果您的数据元素是自定义类型,或者您的collate_fn返回的是一个自定义类型的批处理drop_last (bool, optional)– set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: False)
如果数据集大小不能被批量大小整除,则设置为True以删除最后一个不完整的批量。 如果为False并且数据集的大小不能被批次大小整除,则最后一批将较小。timeout (numeric, optional)– if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: 0)
如果为正,则为从工作人员收集批次的超时值。 应始终为非负数。 (默认值:0)worker_init_fn (callable, optional)– If not None, this will be called on each worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)prefetch_factor (int, optional, keyword-only arg)– Number of samples loaded in advance by each worker. 2 means there will be a total of 2 * num_workers samples prefetched across all workers. (default: 2)
每个子流程预先加载的样本数。 2表示将在所有子流程中预取总共2 * num_workers个样本。 (默认值:2)persistent_workers (bool, optional)– If True, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers Dataset instances alive. (default: False)
如果为True,则一次使用数据集后,数据加载器将不会关闭工作进程。 这样可以使Worker Dataset实例保持活动状态。 (默认值:False)
🦪 实战案例
边栏推荐
- SQL language
- How to open an account for agricultural futures? Are there any financial conditions?
- json. Load (s) and json dump(s)
- Fast detection of short text repetition rate
- TensorFlow实战Google深度学习框架第二版学习总结-TensorFlow入门
- opencv#4 手写体识别:自建训练集完美
- How to write a global notice component?
- Comply with medical reform and actively layout -- insight into the development of high-value medical consumables under the background of centralized purchase 2022
- Tensorflow actual combat Google deep learning framework second edition learning summary tensorflow introduction
- [untitled]
猜你喜欢

SQL语言

安霸CV2FS/CV22FS获得ASIL C芯片功能安全认证,超越市场同类芯片水平

ORB_ Slam2 visual inertial tight coupling positioning technology route and code explanation 2 - IMU initialization

“绽放杯”5G应用奖项大满贯!广和通多个联合项目荣获通用产品专题赛一、二、三等奖

MapReduce之分区案例的代码实现

2290. Minimum Obstacle Removal to Reach Corner

MapReduce之排序及序列化案例的代码实现

产品设计软件Figma用不了,国内有哪些相似功能的软件

Vins theory and code explanation 4 - initialization

Explore the secrets behind the open source data visualization development platform flyfish!
随机推荐
Jiabo gp2120tu label printer installation and use tutorial (PC)
HKU and NVIDIA | factuality enhanced language models for open ended text generation
MapReduce案例之多Map阶段求共同好友
What has guanghetong done in the three years of 5g business from "seeding in the first generation" to "flower on the ground"?
Tensorflow actual combat Google deep learning framework second edition learning summary tensorflow introduction
ORB_SLAM2视觉惯性紧耦合定位技术路线与代码详解0——整体框架与理论基础知识
Vins Theory and Code detail 4 - Initialization
Google x open source grabbing manipulator can find the target part at a glance without manual marking [turn]
云图说|每个成功的业务系统都离不开APIG的保驾护航
22. Generate Parentheses
从“初代播种”到“落地生花”,广和通在5G商用三年间做了什么?
[untitled]
姿态估计之2D人体姿态估计 - SimDR: Is 2D Heatmap Representation Even Necessary for Human Pose Estimation?
Guanghetong cooperates with China Mobile, HP, MediaTek and Intel to build 5g fully connected PC pan terminal products
this和对象原型
[sans titre]
广和通高算力智能模组为万亿级市场5G C-V2X注智
产品设计软件Figma用不了,国内有哪些相似功能的软件
How does CRM help enterprises and salespeople?
港大、英伟达 | Factuality Enhanced Language Models for Open-Ended Text Generation(用于开放式文本生成的事实性增强语言模型)