当前位置:网站首页>线性代数之二阶与三阶行业式

线性代数之二阶与三阶行业式

2022-07-23 02:46:00 闲人不梦卿

二阶与三阶行业式

1.二元线性方程组与二阶行列式

  1.1 如何求解下面的二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \left\{ \begin{array}{c} a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2 \end{array} \right. { a11x1+a12x2=b1a21x1+a22x2=b2
  为消除未知数x2,以a22与a12分别乘上列两端方程的两端,然后两个方程相减,得到
( a 11 a 12 − a 12 a 21 ) x 1 = b 1 a 22 − a 12 b 2 \begin{array}{c} (a_{11}a_{12}-a_{12}a_{21})x1=b_1a_{22} -a_{12}b_2\\ \end{array} (a11a12a12a21)x1=b1a22a12b2
  类似地,消去x1,得
( a 11 a 12 − a 12 a 21 ) x 2 = a 11 b 2 − b 1 a 21 \begin{array}{c} (a_{11}a_{12}-a_{12}a_{21})x2=a_{11}b_{2} -b_1a_{21}\\ \end{array} (a11a12a12a21)x2=a11b2b1a21
  当a11a12-a12a21≠0,求得方程组的解为:
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 x_1 = \frac {b_1a_{22}-a_{12}b_2} {a_{11}a_{22}-a_{12}a_{21}} x1=a11a22a12a21b1a22a12b2

x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 x_2 = \frac {a_{11}b_2-b_1a_{21}} {a_{11}a_{22}-a_{12}a_{21}} x2=a11a22a12a21a11b2b1a21

  把a11a12-a12a21分母,按照在最上面的二元线性方程组位置,排成二行二列的数表
a 11 a 12 a 21 a 22 \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{matrix} a11a21a12a22

  表达式a11a12-a12a21称为数表确定的二阶行列式,记作
∣ a 11 a 12 a 21 a 22 ∣ \left| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{matrix} \right| a11a21a12a22

原网站

版权声明
本文为[闲人不梦卿]所创,转载请带上原文链接,感谢
https://blog.csdn.net/atu1111/article/details/125735093