当前位置:网站首页>Platts Analysis-MATLAB Toolbox Function
Platts Analysis-MATLAB Toolbox Function
2022-08-02 05:26:00 【CS research GO】
Hello,everyone!
我是鲁班·,一个热衷于科研和软开的胖子!
1 理论
Procrustes Analysis普氏分析法,This blog is a good introduction to the theory of Platts analysis,有兴趣的同学可以读一读.
2 MATLAB函数
2.1 MATLAB函数介绍-procrustes
procrustes Procrustes Analysis
D = procrustes(X, Y) determines a linear transformation (translation,
reflection, orthogonal rotation, and scaling) of the points in the
matrix Y to best conform them to the points in the matrix X. The
"goodness-of-fit" criterion is the sum of squared errors. procrustes
returns the minimized value of this dissimilarity measure in D. D is
standardized by a measure of the scale of X, given by
sum(sum((X - repmat(mean(X,1), size(X,1), 1)).^2, 1))
i.e., the sum of squared elements of a centered version of X. However,
if X comprises repetitions of the same point, the sum of squared errors
is not standardized.
X and Y are assumed to have the same number of points (rows), and
procrustes matches the i'th point in Y to the i'th point in X. Points
in Y can have smaller dimension (number of columns) than those in X.
In this case, procrustes adds columns of zeros to Y as necessary.
[D, Z] = procrustes(X, Y) also returns the transformed Y values.
[D, Z, TRANSFORM] = procrustes(X, Y) also returns the transformation
that maps Y to Z. TRANSFORM is a structure with fields:
c: the translation component
T: the orthogonal rotation and reflection component
b: the scale component
That is, Z = TRANSFORM.b * Y * TRANSFORM.T + TRANSFORM.c.
[...] = procrustes(..., 'Scaling',false) computes a procrustes solution
that does not include a scale component, that is, TRANSFORM.b == 1.
procrustes(..., 'Scaling',true) computes a procrustes solution that
does include a scale component, which is the default.
[...] = procrustes(..., 'Reflection',false) computes a procrustes solution
that does not include a reflection component, that is, DET(TRANSFORM.T) is
1. procrustes(..., 'Reflection','best') computes the best fit procrustes
solution, which may or may not include a reflection component, 'best' is
the default. procrustes(..., 'Reflection',true) forces the solution to
include a reflection component, that is, DET(TRANSFORM.T) is -1.
Examples:
% Create some random points in two dimensions
n = 10;
X = normrnd(0, 1, [n 2]);
% Those same points, rotated, scaled, translated, plus some noise
S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5]; % rotate 60 degrees
Y = normrnd(0.5*X*S + 2, 0.05, n, 2);
% Conform Y to X, plot original X and Y, and transformed Y
[d, Z, tr] = procrustes(X,Y);
plot(X(:,1),X(:,2),'rx', Y(:,1),Y(:,2),'b.', Z(:,1),Z(:,2),'bx');
2.2 procrustes 测试实例
- data 数据集
data =
7.61597019000000
6.76320399000000
6.60918327200000
6.31725582000000
7.11964454600000
7.43044326800000
7.96325953100000
7.80692535700000
7.56442238700000
7.72914905000000
8.12539049300000
9.00709395200000
9.90960423500000
11.3552868200000
11.8654178800000
12.6554510100000
13.1595179900000
13.2571674800000
13.4085209200000
13.3154797800000
12.9042477900000
12.5759433300000
12.3723241500000
12.0329882400000
11.6008698000000
11.3132455600000
11.1818076300000
10.8807610100000
10.7673431100000
10.6941123700000
10.6389603000000
10.6410223100000
10.5608535500000
10.3697213600000
10.4243787300000
10.4770807500000
10.5255527700000
10.7548124400000
10.8544539000000
10.8575230400000
- matlab代码
% 图像差异
figure
subplot(1,2,1)
plot(data(1:20));
subplot(1,2,2)
plot(data(1:20));
figure
subplot(1,2,1)
plot(data(1:20));
subplot(1,2,2)
plot(data(21:40));
% 结果差异
procrustes(data(1:20),data(1:20))
procrustes(data(1:20),data(21:40))
- 仿真结果
- 图片
- 结果
ans =
0
ans =
0.6163
内容靠得住,关注不迷路.
边栏推荐
猜你喜欢

吴恩达机器学习系列课程笔记——第十四章:降维(Dimensionality Reduction)

Your device is corrupt. It cant‘t be trusted and may not work propely.

el-dropdown(下拉菜单)的入门学习

复制延迟案例(3)-单调读

CaDDN paper reading of monocular 3D target detection

Deep Blue Academy - Visual SLAM Lecture Fourteen - Chapter 5 Homework

el-select和el-tree结合使用-树形结构多选框

Scientific research notes (5) SLAC WiFi Fingerprint+ Step counter fusion positioning

Deep Blue Academy-Visual SLAM Lecture 14-Chapter 6 Homework

CC1101魔幻的收发切换机制
随机推荐
深度学习基础之批量归一化(BN)
3D目标检测之数据集
盒子移动和滚动加载效果练习
未来智安创始人兼CEO唐伽佳荣膺36氪X·36Under36 “S级创业者”
无主复制系统(1)-节点故障时写DB
单目三维目标检测之CaDDN论文阅读
matlab作图显示中文正常,保存图片中文乱码
携手推进国产化发展,未来智安与麒麟软件完成兼容互认证
shell脚本的基础知识
this指向问题
WIN10什么都没开内存占用率过高, WIN7单网卡设置双IP
el-dropdown(下拉菜单)的入门学习
v-bind动态绑定
热爱和责任
生物识别学习资源推荐
Win8.1下QT4.8集成开发环境的搭建
MapFi paper structure organization
MySQL read-write separation mysql-proxy deployment
腾讯云+keepalived搭建云服务器主备实践
micro-ros arduino esp32 ros2 笔记