当前位置:网站首页>tf. contrib. layers. batch_ norm
tf. contrib. layers. batch_ norm
2022-06-24 10:18:00 【Wanderer001】
Reference resources tf.contrib.layers.batch_norm - cloud + Community - Tencent cloud
Adds a Batch Normalization layer from http://arxiv.org/abs/1502.03167
tf.contrib.layers.batch_norm(
inputs,
decay=0.999,
center=True,
scale=False,
epsilon=0.001,
activation_fn=None,
param_initializers=None,
param_regularizers=None,
updates_collections=tf.GraphKeys.UPDATE_OPS,
is_training=True,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
batch_weights=None,
fused=None,
data_format=DATA_FORMAT_NHWC,
zero_debias_moving_mean=False,
scope=None,
renorm=False,
renorm_clipping=None,
renorm_decay=0.99,
adjustment=None
)
"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift"
Sergey Ioffe, Christian Szegedy
Can be used as a normalizer function for conv2d and fully_connected. The normalization is over all but the last dimension if data_format is NHWC and all but the second dimension if data_format is NCHW. In case of a 2D tensor this corresponds to the batch dimension, while in case of a 4D tensor this corresponds to the batch and space dimensions.
Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in tf.GraphKeys.UPDATE_OPS, so they need to be added as a dependency to the train_op. For example:
update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)
One can set updates_collections=None to force the updates in place, but that can have a speed penalty, especially in distributed settings.
Args:
inputs: A tensor with 2 or more dimensions, where the first dimension hasbatch_size. The normalization is over all but the last dimension ifdata_formatisNHWCand the second dimension ifdata_formatisNCHW.decay: Decay for the moving average. Reasonable values fordecayare close to 1.0, typically in the multiple-nines range: 0.999, 0.99, 0.9, etc. Lowerdecayvalue (recommend tryingdecay=0.9) if model experiences reasonably good training performance but poor validation and/or test performance. Try zero_debias_moving_mean=True for improved stability.center: If True, add offset ofbetato normalized tensor. If False,betais ignored.scale: If True, multiply bygamma. If False,gammais not used. When the next layer is linear (also e.g.nn.relu), this can be disabled since the scaling can be done by the next layer.epsilon: Small float added to variance to avoid dividing by zero.activation_fn: Activation function, default set to None to skip it and maintain a linear activation.param_initializers: Optional initializers for beta, gamma, moving mean and moving variance.param_regularizers: Optional regularizer for beta and gamma.updates_collections: Collections to collect the update ops for computation. The updates_ops need to be executed with the train_op. If None, a control dependency would be added to make sure the updates are computed in place.is_training: Whether or not the layer is in training mode. In training mode it would accumulate the statistics of the moments intomoving_meanandmoving_varianceusing an exponential moving average with the givendecay. When it is not in training mode then it would use the values of themoving_meanand themoving_variance.reuse: Whether or not the layer and its variables should be reused. To be able to reuse the layer scope must be given.variables_collections: Optional collections for the variables.outputs_collections: Collections to add the outputs.trainable: IfTruealso add variables to the graph collectionGraphKeys.TRAINABLE_VARIABLES(see tf.Variable).batch_weights: An optional tensor of shape[batch_size], containing a frequency weight for each batch item. If present, then the batch normalization uses weighted mean and variance. (This can be used to correct for bias in training example selection.)fused: ifNoneorTrue, use a faster, fused implementation if possible. IfFalse, use the system recommended implementation.data_format: A string.NHWC(default) andNCHWare supported.zero_debias_moving_mean: Use zero_debias for moving_mean. It creates a new pair of variables 'moving_mean/biased' and 'moving_mean/local_step'.scope: Optional scope forvariable_scope.renorm: Whether to use Batch Renormalization (https://arxiv.org/abs/1702.03275). This adds extra variables during training. The inference is the same for either value of this parameter.renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalarTensorsused to clip the renorm correction. The correction(r, d)is used ascorrected_value = normalized_value * r + d, withrclipped to [rmin, rmax], anddto [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively.renorm_decay: Momentum used to update the moving means and standard deviations with renorm. Unlikemomentum, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note thatdecayis still applied to get the means and variances for inference.adjustment: A function taking theTensorcontaining the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example,adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. IfNone, no adjustment is applied.
Returns:
- A
Tensorrepresenting the output of the operation.
Raises:
ValueError: Ifdata_formatis neitherNHWCnorNCHW.ValueError: If the rank ofinputsis undefined.ValueError: If rank or channels dimension ofinputsis undefined.
边栏推荐
- 学习使用php对字符串中的特殊符号进行过滤的方法
- Leetcode-498: diagonal traversal
- SQL Sever中的窗口函数row_number()rank()dense_rank()
- Graffiti smart brings a variety of heavy smart lighting solutions to the 2022 American International Lighting Exhibition
- Safety and food security for teachers and students of the trapped Yingxi middle school
- 包装类型与基本类型的区别
- 1. project environment construction
- leetCode-223: 矩形面积
- 百度网盘下载一直请求中问题解决
- 植物生长h5动画js特效
猜你喜欢

微信小程序学习之 实现列表渲染和条件渲染.

Getting user information for applet learning (getuserprofile and getUserInfo)

线程的六种状态

1.项目环境搭建

2021-08-17

Floating point notation (summarized from cs61c and CMU CSAPP)

p5.js实现的炫酷交互式动画js特效

Nvisual digital infrastructure operation management software platform

Leetcode - 498: traversée diagonale

413 binary tree Foundation
随机推荐
Leetcode-1089: replication zero
[input method] so far, there are so many Chinese character input methods!
leetCode-498: 对角线遍历
Graffiti smart brings a variety of heavy smart lighting solutions to the 2022 American International Lighting Exhibition
SQL sever基本数据类型详解
2022-06-23:给定一个非负数组,任意选择数字,使累加和最大且为7的倍数,返回最大累加和。 n比较大,10的5次方。 来自美团。3.26笔试。
Nvisual digital infrastructure operation management software platform
Dragging El table sortablejs
学习使用php对字符串中的特殊符号进行过滤的方法
解决微信小程序rich-text富文本标签内部图片宽高自适应的方法
线程池的执行流程
大中型企业如何构建自己的监控体系
Detailed explanation of PHP singleton mode
leetCode-1823: 找出游戏的获胜者
How to standardize data center infrastructure management process
CVPR 2022 Oral | 英伟达提出自适应token的高效视觉Transformer网络A-ViT,不重要的token可以提前停止计算
Why is JSX syntax so popular?
leetCode-面试题 16.06: 最小差
Juul, the American e-cigarette giant, suffered a disaster, and all products were forced off the shelves
涂鸦智能携多款重磅智能照明解决方案,亮相2022美国国际照明展