当前位置:网站首页>Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition program running record
Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition program running record
2022-07-30 07:08:00 【enen mad】
Thesis title:
"Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition"
Author List:
Yang Yang (Tianjin University), Wang Chaoyue (Sydney University), Liu Risheng (Dalian University of Technology), Zhang Lin (Tongji University), Guo Xiaojie (Tianjin University), Tao Dacheng (Sydney University, JD Discovery Research Institute)
Paper abstract:
To overcome the overfitting problem of dehazing models trained on synthetic datasets, many recent approaches attempt to use unpaired data for training to improve the generalization ability of the models.However, most of these methods simply follow the idea of CycleGAN to construct the dehazing cycle and the fogging cycle, but ignore the physical characteristics of the haze environment in the real world, that is, the influence of haze on the visibility of objects varies with depth and fog density.In this paper, we propose a self-enhancing image dehazing framework, called D4 (Dehazing via Decomposing transmission map into Density and Depth), for image dehazing and fog generation.Rather than simply estimating transmission maps or clear images, our proposed framework focuses on exploring scattering coefficients and depth information in hazy and clear images.With the estimated scene depth, our method is able to re-render foggy images with different thicknesses of fog and improve the performance of the dehazing network as a self-data augmentation mechanism.Notably, the entire training process relies only on unpaired hazy and clear images, successfully recovering scattering coefficients, depth maps, and clear images from a single hazy image.Comprehensive experiments show that our method outperforms state-of-the-art non-pairwise dehazing methods with fewer parameters and FLOPs.
Paper Information:
[1] Yang Yang, Chaoyue Wang, Risheng Liu, Lin Zhang, Xiaojie Guo, Dacheng Tao. Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition. CVPR 2022.
Paper link:
https://www.aliyundrive.com/s/WqWvoBkrzBi
Code link:
https://github.com/YaN9-Y/D4
Related instructional videos:
Code debugging:
1. Required packages
cv2
pip install opencv-pythonyaml
pip install pyyamlkornia
pip install korniamatplotlib
pip install matplotlib2. Some errors and their solutions
(1) The yaml.load function is missing the Loader parameter

Change the corresponding line in the corresponding config.py file to
self._dict = yaml.load(self._yaml, Loader=yaml.FullLoader)(2) No response to the Internet
Load local model instead, src/blockLine 57 in .py
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):#efficientnet = torch.hub.load(# "rwightman/gen-efficientnet-pytorch",# "tf_efficientnet_lite3",# pretrained=use_pretrained,# exportable=exportable,# ) It needs to be connected to the Internet, so change it to the following writing and load the local fileefficientnet = torch.hub.load("/home/yanhaorui/.cache/torch/hub/rwightman_gen-efficientnet-pytorch_master","tf_efficientnet_lite3",pretrained=use_pretrained,exportable=exportable,source='local')return _make_efficientnet_backbone(efficientnet)3. The method in kornia is wrong

The corresponding line in D4.py is changed to
depth = kornia.filters.median_blur(depth,(9,9))4. save() parameter problem

The corresponding function of D4.py is changed to
def save(self, save_best=False, psnr=None, iteration=None):self.model.save()边栏推荐
- Detailed explanation of regular expression syntax and practical examples
- Servlet basic principles and application of common API methods
- Knowledge distillation method of target detection
- Mycat2.0搭建教程
- Pytorch(三):可视化工具(Tensorboard、Visdom)
- 六、Kotlin基础学习:函数
- Flink CDC implements Postgres to MySQL streaming processing transmission case
- 边境的悍匪—机器学习实战:第九章 无监督学习任务
- 目标检测中的知识蒸馏方法
- Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition程序运行记录
猜你喜欢

单例模式:Swift 实现

Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem

边境的悍匪—机器学习实战:第十五章 使用CNN和RNN处理序列

常用损失函数(二):Dice Loss

九、Kotlin基础学习:1、Companion的扩展方法和扩展属性;2、一般类的扩展方法和扩展属性;3、委托;

SQL Server Installation Tutorial

十七、Kotlin进阶学习:1、守护线程;2、线程和协程之间的效率对比;3、取消协程;

Pytorch(一):动态图机制以及框架结构

CNN经典模型发展进程

边境的悍匪—机器学习实战:第十章 Keras人工神经网络简介
随机推荐
十七、Kotlin进阶学习:1、守护线程;2、线程和协程之间的效率对比;3、取消协程;
Detailed explanation of ClickHouse query statement
抽象工厂模式(Swift 实现)
边境的悍匪—机器学习实战:第九章 无监督学习任务
Knowledge distillation method of target detection
XMLBean的基础运用
基于MATLAB 2021b的机器学习、深度学习
Self-augmented Unpaired Image Dehazing via Density and Depth Decomposition程序运行记录
【零基础搞定C语言——导航汇总篇】
21. Kotlin Advanced Learning: Implementing Simple Network Access Encapsulation
Use kotlin to extend plugins/dependencies to simplify code (after the latest version 4.0, this plugin has been deprecated, so please choose to learn, mainly to understand.)
Rsync实现Win系统间的文件夹或数据同步
Arthas 命令解析(watch/tt/sc)
十二、Kotlin进阶学习:一、Lambda 表达式;二、高阶函数;
对于国内数据交换平台的分析
Detailed introduction to the usage of Nacos configuration center
边境的悍匪—机器学习实战:第七章 集成学习和随机森林
Conda 安装 tensorflow gpu 1.13.1(验证可行)
常用损失函数(一):Focal Loss
十五、Kotlin进阶学习:一、子类与子类型;二、协变;三、逆变;