当前位置:网站首页>【特征提取】基于稀疏PCA实现目标识别信息特征选择附matlab源码
【特征提取】基于稀疏PCA实现目标识别信息特征选择附matlab源码
2022-06-26 06:43:00 【Matlab科研工作室】
1 简介
Bag-of-words (BoW) methods are a popular class of object recognition methods that use image features (e.g. SIFT) to form visual dictionaries and subsequent histogram vectors to represent object images in the recognition process. The accuracy of the BoW classifiers, however, is often limited by the presence of uninformative features extracted from the background or irrelevant image segments. Most existing solutions to prune out uninformative features rely on enforcing pairwise epipolar geometry via an expensive structure-from- motion (SfM) procedure. Such solutions are known to break down easily when the camera transformation is large or when the features are extracted from low- resolution low-quality images. In this paper, we propose a novel method to select informative object features using a more efficient algorithm called Sparse PCA. First, we show that using a large-scale multiple-view object database, informative features can be reliably identified from a high- dimensional visual dictionary by applying Sparse PCA on the histograms of each object category. Our experiment shows that the new algorithm improves recognition accuracy compared to the traditional BoW methods and SfM methods. Second, we present a new solution to Sparse PCA as a semidefinite programming problem using Augmented Lagrange Multiplier methods. The new solver outperforms the state of the art for estimating sparse principal vectors as a basis for a low-dimensional subspace model. The source code of our algorithms will be made public on our website.
2 部分代码
clc;T = 5; % Number of trials to average run times overdimensions = [10 50 100 150 200 250 300 350 400 450 500];ALMTimes = zeros(length(dimensions), T);DSPCATimes = zeros(length(dimensions), T);ALMPrec = zeros(length(dimensions), T);DSPCAPrec = zeros(length(dimensions), T);for i = 1:length(dimensions)% Initialize parameters ****************n=dimensions(i); p = 1; % Dimensionratio=1; % "Signal to noise" ratio% rand('state',25); % Fix random seedfor j = 1:T% Form test matrix as: rank one sparse + noisetestvec=rand(n,p);testvec = testvec - ones(n,1)*mean(testvec);numZero = n - floor(0.1*n);randInd = randperm(n); randInd1 = randInd(1:numZero); randInd2 = randInd(numZero+1:end);testvec(randInd1,:) = 0;testvec=ratio*testvec; % + rand(n,p);testvec = testvec/norm(testvec);A = testvec*testvec'/p;lambda = max(1e-5,min(diag(A))*0.5);%(min(diag(A)) + max(diag(A)))/2;tstartDSPCA = tic;[x1, DSPCAIter] = DSPCA(A, lambda);tstopDSPCA = toc(tstartDSPCA);DSPCAPrec(i,j) = norm(abs(x1) - abs(testvec));tstartALM = tic;[x, ALMIter] = SPCA_ALM(A, lambda);tstopALM = toc(tstartALM);ALMPrec(i,j) = norm(abs(x) - abs(testvec));ALMTimes(i,j) = tstopALM;DSPCATimes(i,j) = tstopDSPCA;fprintf('\n [dim,trial] = [%i, %i]: [DSPCA time, SPCA-ALM time] = [%0.4f %0.4f]\t[DSPCA Iter, SPCA-ALM Iter] = [%i, %i]',n, j, tstopDSPCA, tstopALM, DSPCAIter, ALMIter);endfprintf('\n');endfprintf('\n');ALMTimes = mean(ALMTimes,2);DSPCATimes = mean(DSPCATimes,2);ALMPrec = mean(ALMPrec,2);DSPCAPrec = mean(DSPCAPrec,2);figurehold onplot(dimensions, DSPCATimes, '-bx', 'linewidth', 2)plot(dimensions, ALMTimes, '-ro', 'linewidth', 2)legend('DSPCA', 'SPCAALM');xlabel('Dimension (n)');ylabel('Compute time (sec)');title('Time comparison of DSPCA and SPCAALM')figurehold onplot(dimensions, DSPCAPrec, '-gx', 'linewidth', 2)plot(dimensions, ALMPrec, '-mo', 'linewidth', 2)legend('DSPCA', 'SPCAALM');xlabel('Dimension (n)');ylabel('Error');title('Precision comparison of DSPCA and SPCAALM')
3 仿真结果


4 参考文献
[1] Naikal N , Yang A Y , Sastry S S . Informative feature selection for object recognition via Sparse PCA[C]// International Conference on Computer Vision. IEEE, 2011.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
边栏推荐
- Go学习笔记1.3-变量的数据类型篇
- cocoscreator播放Spine动画
- API and encapsulation of cookies
- Market trend report, technical innovation and market forecast of microencapsulated chemical pesticides in China
- Failed to configure a DataSource: ‘url‘ attribute is not specified and no embedded datasource could
- STM 32 uses cube to generate Tim to trigger ADC and transmit through DMA
- C# Nuget离线缓存包安装
- Research Report on China's surfactant market demand and future investment opportunities 2022
- ~94 zoom
- OCA Security Alliance (cybersecurity mesh)
猜你喜欢

Load balancer does not have available server for client: userService问题解决

Temperature alarm

在公司逮到一个阿里10年的测试开发,聊过之后大彻大悟...

Go language learning notes 1.1

淺析一道經典題

Pytorch uses multi GPU parallel training and its principle and precautions

宝塔服务器搭建及数据库远程连接

同步通信和异步通信的区别以及优缺点

营销技巧:相比较讲产品的优点,更有效的是要向客户展示使用效果

Guide to "avoid dismissal during probation period"
随机推荐
Differences, advantages and disadvantages between synchronous communication and asynchronous communication
TCP連接與斷開,狀態遷移圖詳解
SQL中空值的判断
闭包问题C# Lua
Connexion et déconnexion TCP, détails du diagramme de migration de l'état
Solution of garbled code in sparkshell deletion key of SecureCRT
Research Report on market supply and demand and strategy of China's microneedle device industry
浅析一道经典题
Play with a variety of application scenarios and share secrets with Kwai MMU
Judgment of SQL null value
面试官:测试计划和测试方案有什么区别?
Lightgbm-- parameter adjustment notes
cocoscreator播放Spine动画
DS18B20 details
Open source demo| you draw and I guess -- make your life more interesting
【微服务系列】Protocol buffer动态解析
Container with the most water
TCP connection and disconnection, detailed explanation of state transition diagram
同步通信和异步通信的区别以及优缺点
Gof23 - builder mode