当前位置:网站首页>What is parametric design, let's understand it through practical operation?| SOLIDWORKS How-To Videos
What is parametric design, let's understand it through practical operation?| SOLIDWORKS How-To Videos
2022-08-03 06:10:00 【ueotek】
For mechanical design, parametric design is to extract the main parameters in the product, consider the influence of these parameters on other parameters or dimensions in the modeling process, and then modify these main parameters to complete similar productsChanges, improve the reuse rate of the model, thereby improving the design efficiency.
This video brings you the parametric design of the unpowered roller. There are two main techniques:
Tips 1: Pattern-driven component pattern:

Trick 2: Linear array to reference

The key point of the parametric design of this drum is the transfer of parameters. The main parameter is controlled by the total length, and the secondary parameters are controlled in specific parts.The total length of the roller line is the main size parameter, which is controlled in the assembly, and then quoted in the part to calculate other parameters.

Pattern-driven component patterning is a command to reference the parameters of patterned features in a part to an assembly for component patterning. For details, please watch the video below.
边栏推荐
- Mysql 预准备语句详解(prepare、execute、deallocate)
- 自监督论文阅读笔记 TASK-RELATED SELF-SUPERVISED LEARNING FOR REMOTE SENSING IMAGE CHANGE DETECTION
- ZEMAX | 如何围绕空间中的任何点旋转任何元素
- 虚拟地址空间布局
- [XSS, file upload, file inclusion]
- Qlik Sense 字符串截取和拼接详解(Left、Right、&)
- 自监督论文阅读笔记 Self-supervised Label Augmentation via Input Transformations
- ASP.NET MVC:自定义 Route
- 【第二周】卷积神经网络
- 自监督论文阅读笔记 DetCo: Unsupervised Contrastive Learning for Object Detection
猜你喜欢

ZEMAX | 在 OpticStudio 中使用自由曲面进行设计

进程间通信IPC - 信号量

自监督论文阅读笔记 S3Net:Self-supervised Self-ensembling Network for Semi-supervised RGB-D Salient Object Det

SolidWorks 操作视频 | 流体分析结果演示

全球一流医疗技术公司如何最大程度提高设计工作效率 | SOLIDWORKS 产品探索

自监督论文阅读笔记 Incremental-DETR:Incremental Few-Shot Object Detection via Self-Supervised Learning

Hook初探索

Gradle插件与代理服务器导致Sync Project失败的问题

Makefile

自监督论文阅读笔记SELF-SUPERVISED SPECTRAL MATCHING NETWORK FOR HYPERSPECTRAL TARGET DETECTION
随机推荐
ZEMAX | 探索 OpticStudio中的序列模式
交叉熵(第六周)
opencv
自监督论文阅读笔记 TASK-RELATED SELF-SUPERVISED LEARNING FOR REMOTE SENSING IMAGE CHANGE DETECTION
Mysql 外键详解(Foreign Key)
【第二周】卷积神经网络
MATLAB给多组条形图添加误差棒
STM32启动文件的选择
电子元器件的分类有哪些?
自监督论文阅读笔记DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive
电子元器件和电子元件的区别有那些?
自监督论文阅读笔记 Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning
ZEMAX | 探究 OpticStudio 偏振分析功能
Convolutional Nerual Nertwork(CNN)
C# 数组之回溯法
opencv目标检测
自监督论文阅读笔记: MoCoV2使用动量对比学习改进基线
对象の使用
动漫 吞噬星空
【第三周】ResNet+ResNeXt