当前位置:网站首页>MIT-6874-Deep Learning in the Life Sciences Week4
MIT-6874-Deep Learning in the Life Sciences Week4
2022-06-30 10:09:00 【Wooden girl】
Recurrent Neural Networks LSTMs, Transformers, Graph Neural Networks
Recurrent Neural Networks (RNNs)
Encoding time
- Autoregressive model
- Use “delay taps” Predict the next item from a fixed number of previous items .
- Feedforward neural networks
- The autoregressive model is extended by using one or more nonlinear hidden elements

If we give the generated model some hidden states , If we give this hidden state its own internal dynamics ,

hidden Markov model 
RNN

Alternative architectures for RNNs

LSTM




- What the Internet has learned
- It learns four different activity patterns of three hidden units . These patterns correspond to nodes in finite state automata
- Cyclic networks can simulate finite state automata , But its function is exponential . Yes N Hidden neurons , It has 2^N Two possible binary activity vectors

Transformer

GNN





Graph neural nets
Learn how to propagate information through graphs to compute node properties 





Application to “classical” network problems

Unsupervised learning with GNNs





How should we decode the graph?
Not all graphs are chemically valid 


边栏推荐
- 事件委托的使用与说明》
- [Ubuntu redis installation]
- [ubuntu-mysql 8 installation and master-slave replication]
- Eight sorts (I)
- What makes flutter special
- MIT-6874-Deep Learning in the Life Sciences Week5
- NTP of Prometheus monitoring_ exporter
- Brève description du collecteur d'ordures G1
- log4j
- Js獲取指定字符串指定字符比特置&指定字符比特置區間的子串【簡單詳細】
猜你喜欢
![[JVM] brief introduction to CMS](/img/4e/df4a193eed39438f808059f67f19a1.png)
[JVM] brief introduction to CMS

JS obtient la chaîne spécifiée spécifiant la position du caractère & sous - chaîne spécifiant la plage de position du caractère 【 détails simples 】

Appium自动化测试基础 — adb shell 命令

鼠标右键打开cmd(命令行)

Appium automation test foundation - ADB shell command

安装和使用

unable to convert expression into double array

力扣 428. 序列化和反序列化 N 叉树 DFS

Difference between bow and cbow

【C语言快速上手】带你了解C语言,零基础入门③
随机推荐
Machine learning note 9: prediction model optimization (to prevent under fitting and over fitting problems)
Brève description du collecteur d'ordures G1
Application exploration and practice of super convergence in the production environment of insurance industry
LVS load balancing
机械臂速成小指南(五):末端执行器
正则表达式基础
Flume learning II - Cases
9.缓存优化
Thrift easy to use
Flume learning 1
Returnjson, which allows more custom data or class names to be returned
NFS shared services
将小程序容器技术应用到物联网IoT生态建设中
G code explanation | list of the most important G code commands
陈颢天 荣获第七届少儿模特明星盛典全国总决赛 全国总冠军
Object detection yolov5 open source project debugging
CRF (conditional random field) learning summary
Mysql database learning 1
[new book recommendation] mongodb performance tuning
How to reduce the delay in live broadcast in the development of live broadcast source code with goods?