当前位置:网站首页>[image denoising] image denoising based on bicube interpolation and sparse representation matlab source code
[image denoising] image denoising based on bicube interpolation and sparse representation matlab source code
2022-07-26 06:32:00 【matlab_ dingdang】
1 Content introduction
This paper solves the problem of generating super-resolution from a single low resolution input image (SR) The problem with images . We solve this problem from the perspective of compressed sensing . The low resolution image is regarded as the down sampled version of the high resolution image , Suppose that the patch has a sparse representation relative to the over complete dictionary of the prototype signal atom . The principle of compressed sensing ensures that under mild conditions , Sparse representation can be correctly recovered from the down sampled signal . We will prove the effectiveness of sparsity as a priori for the specification of otherwise ill posed super-resolution problems . We further show that , A small group of original patches randomly selected from training images with similar statistical properties to the input image can usually be used as a good dictionary , Because the calculated representation is sparse , The restored high-resolution image is competitive and even better than others SR Method generated image .
2 Simulation code
% =========================================================================% Simple demo codes for image super-resolution via sparse representation%% Reference% =========================================================================clear all; clc;% read test imageim_l = imread('Data/Testing/input.bmp');% set parameterslambda = 0.2; % sparsity regularizationoverlap = 4; % the more overlap the better (patch size 5x5)up_scale = 2; % scaling factor, depending on the trained dictionarymaxIter = 20; % if 0, do not use backprojection% load dictionaryload('Dictionary/D_1024_0.15_5.mat');% change color space, work on illuminance onlyim_l_ycbcr = rgb2ycbcr(im_l);im_l_y = im_l_ycbcr(:, :, 1);im_l_cb = im_l_ycbcr(:, :, 2);im_l_cr = im_l_ycbcr(:, :, 3);% image super-resolution based on sparse representation[im_h_y] = ScSR(im_l_y, 2, Dh, Dl, lambda, overlap);[im_h_y] = backprojection(im_h_y, im_l_y, maxIter);% upscale the chrominance simply by "bicubic"[nrow, ncol] = size(im_h_y);im_h_cb = imresize(im_l_cb, [nrow, ncol], 'bicubic');im_h_cr = imresize(im_l_cr, [nrow, ncol], 'bicubic');im_h_ycbcr = zeros([nrow, ncol, 3]);im_h_ycbcr(:, :, 1) = im_h_y;im_h_ycbcr(:, :, 2) = im_h_cb;im_h_ycbcr(:, :, 3) = im_h_cr;im_h = ycbcr2rgb(uint8(im_h_ycbcr));% bicubic interpolation for referenceim_b = imresize(im_l, [nrow, ncol], 'bicubic');% read ground truth imageim = imread('Data/Testing/gnd.bmp');% compute PSNR for the illuminance channelbb_rmse = compute_rmse(im, im_b);sp_rmse = compute_rmse(im, im_h);bb_psnr = 20*log10(255/bb_rmse);sp_psnr = 20*log10(255/sp_rmse);% show the imagesfigure,subplot(131),imshow(im_l);title(' Original picture ')subplot(132),imshow(im_h);title(['PSNR for Sparse representation ',num2str( sp_psnr)]);subplot(133), imshow(im_b);title(['PSNR for Bicubic interpolation ',num2str(bb_psnr)]);
3 Running results

4 reference
[1] Kingship , Publicize , Li Yanfeng , etc. . An image denoising algorithm based on sparse representation [J]. Industrial instruments and automation devices , 2013.
[2] Liu Meijuan . be based on MATLAB Research on image denoising based on [C]// Challenges and opportunities :2010 Colleges and universities GIS Forum . 0.
[3] Guo Xiaofeng , Zhao Zheng Chen , Liushengqing , etc. . An image denoising method and system based on image sparse representation :, CN109727219A[P]. 2019.
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- 【Day_04 0421】计算糖果
- Basis of multimodal semantic segmentation
- 英语句式参考纯享版 - 定语从句
- Convolutional neural network (IV) - special applications: face recognition and neural style transformation
- Servlet无法直接获取request请求中的JSON格式数据
- Database and the future of open source
- 【Day02_0419】C语言选择题
- Yolov6: the fast and accurate target detection framework is open source
- Leetcode:934. The shortest Bridge
- Do it yourself smart home: intelligent air conditioning control
猜你喜欢
![[day_060423] no two](/img/2b/5bcb3e089a3157fe72a50ddb767e63.png)
[day_060423] no two

Workflow activiti5.13 learning notes (I)

力扣——4. 寻找两个正序数组的中位数

Flex layout

What are the aspects of performance testing? What are the classification and testing methods?

【图像去噪】基于双立方插值和稀疏表示实现图像去噪matlab源码

Multi target detection

多目标检测

Force buckle - 3. Longest substring without repeated characters

【图像隐藏】基于混合 DWT-HD-SVD 的数字图像水印方法技术附matlab代码
随机推荐
【Day02_0419】C语言选择题
白盒测试的概念、目的是什么?及主要方法有哪些?
nuxt 配置主题切换
输入5个学生的记录(每条记录包括学号和成绩), 组成记录数组, 然后按照成绩由高到低的次序输出. 排序方法采用选择排序
[day_040421] binary conversion
Force buckle - 3. Longest substring without repeated characters
[untitled]
移动web
英语句式参考纯享版 - 定语从句
【Day_05 0422】统计回文
English sentence pattern reference exclusive Edition - adverbial clause
Map集合继承结构
Slice and array of go
[day_070425] legal bracket sequence judgment
Do it yourself smart home: intelligent air conditioning control
机械制造企业如何借助ERP系统,做好生产管理?
English sentence pattern reference exclusive Edition - attributive clause
Niuke network: TOPK problem of additive sum between two ordinal groups
Database and the future of open source
将一个正整数分解质因数,要求分解成尽可能小的多个的因数。