当前位置:网站首页>pyspark---low frequency feature processing
pyspark---low frequency feature processing
2022-08-03 07:40:00 【WGS.】
Low frequency features appear less frequently,I can't learn well either,Better to give bothdefault,integrated learning.
Take a feature as an example:Use for low frequenciesdefault代替,defaultParticipate in coding and training,A new value was encountered while evaluating,也可以用default来填充,This solves the problem of poor low-frequency characterization and cold start.
tmpd = [{
'model': 'AVA', 'city': '苏州', 'y': 0}, {
'model': 'AVA', 'city': '苏州', 'y': 0},
{
'model': 'TNY', 'city': '青岛', 'y': 0}, {
'model': 'AVA', 'city': '青岛', 'y': 0},
{
'model': 'TNY', 'city': '青岛', 'y': 0}, {
'model': 'TNY', 'city': '青岛', 'y': 0},
{
'model': 'TNY', 'city': '青岛', 'y': 0}, {
'model': 'AVA', 'city': '上海', 'y': 0},
{
'model': 'Mi', 'city': '上海', 'y': 0}, {
'model': 'Mi', 'city': '上海', 'y': 0},
{
'model': 'Mi', 'city': '上海', 'y': 0}, {
'model': 'fla', 'city': '北京', 'y': 0}, ]
tmpd = ss.createDataFrame(tmpd)
tmpd.show()
+----+-----+---+
|city|model| y|
+----+-----+---+
|苏州| AVA| 0|
|苏州| AVA| 0|
|青岛| TNY| 0|
|青岛| AVA| 0|
|青岛| TNY| 0|
|青岛| TNY| 0|
|青岛| TNY| 0|
|上海| AVA| 0|
|上海| Mi| 0|
|上海| Mi| 0|
|上海| Mi| 0|
|北京| fla| 0|
+----+-----+---+
- demo示例:The number of records will be less than3 & The eigenvalues that do not have a click are given
default
def row_count2(row):
uid, y = row[0], row[1]
clicks = sum(y)
lens = len(y)
pvs = lens - clicks
return uid, pvs, clicks, lens
''' low frequency processing '''
def low_frequency(df):
low_enc_dict = {
'city': 3, 'model': 3}
for c in low_enc_dict.keys():
dfpg = df.groupby(c).agg(fn.collect_list('y').alias('y')).rdd.map(row_count2).toDF(schema=[c, 'pvs', 'clicks', 'lens'])
# print(dfpg.count())
# dfpg.orderBy(['lens', 'clicks'], ascending=[0, 0]).show(10)
# dfpg.orderBy(['lens', 'clicks'], ascending=[1, 1]).show(50)
# dfpg.filter(dfpg['lens'] <= low_enc_dict[c]).filter(dfpg['clicks'] == 0).select('lens').agg({'lens': 'sum'}).show()
lowlst = []
tlst = dfpg.filter(dfpg['lens'] <= low_enc_dict[c]).filter(dfpg['clicks'] == 0).select(c).collect()
for row in tlst:
lowlst.append(row[0])
df = df.withColumn(c, fn.udf(lambda x: 'default' if x in lowlst else x)(fn.col(c)))
# print(c, len(lowlst), df.filter(df[c] == 'default').count())
return df
tmpd = low_frequency(df=tmpd)
tmpd.show()
+-------+-------+---+
| city| model| y|
+-------+-------+---+
|default| AVA| 0|
|default| AVA| 0|
| 青岛| TNY| 0|
| 青岛| AVA| 0|
| 青岛| TNY| 0|
| 青岛| TNY| 0|
| 青岛| TNY| 0|
| 上海| AVA| 0|
| 上海|default| 0|
| 上海|default| 0|
| 上海|default| 0|
|default|default| 0|
+-------+-------+---+
边栏推荐
猜你喜欢
随机推荐
qt学习之旅--MinGW32编译opencv3.0.0
关于NOI 2022的报到通知
测试用例设计方法之因果图详解
“碳中和”愿景下,什么样的数据中心才是我们需要的?
consul理解
boot - SSE
PHP 获取服务器信息
C语言入门实战(14):选择排序
torch.nn.modules.activation.ReLU is not a Module subclass
MySQL - 触发器
Umi 4 快速搭建项目
C语言实现树的底层遍历--超简代码
开放域OOD主要数据集、评价指标汇总
戳Web3的神话?戳到铁板。
information_schema
亿流量大考(1):日增上亿数据,把MySQL直接搞宕机了...
Data warehouse buried point system and attribution practice
多线程打印ABC(继承+进阶)
【着色器实现Glow可控局部发光效果_Shader效果第十三篇】
MySQL - 视图操作









