当前位置:网站首页>度量学习(Metric Learning)【AMSoftmax、Arcface】
度量学习(Metric Learning)【AMSoftmax、Arcface】
2022-06-12 22:47:00 【u013250861】
一、概述
度量学习 (Metric Learning) == 距离度量学习 (Distance Metric Learning,DML) == 相似度学习。
在数学中,一个度量(或距离函数)是一个定义集合中元素之间距离的函数。一个具有度量的集合被称为度量空间。度量学习(Metric Learning) 是人脸识别中常用的传统机器学习方法,由Eric Xing在NIPS 2002提出,可以分为两种:
- 通过线性变换的度量学习
- 通过非线性变化的度量
其基本原理是根据不同的任务来自主学习出针对某个特定任务的度量距离函数。后来度量学习又被迁移至文本分类领域,尤其是针对高维数据的文本处理,度量学习有很好的分类效果。
二、为什么用度量学习
K-means、K近邻方法、SVM等算法,比较依赖于输入时给定的度量,比如:数据之间的相似性,那么将面临的一个基本的问题是如何获取数据之间的相似度。
为了处理各种各样的特征相似度,我们可以在特定的任务通过选择合适的特征并手动构建距离函数。然而这种方法会需要很大的人工投入,也可能对数据的改变非常不鲁棒。
度量学习作为一个理想的替代,可以根据不同的任务来自主学习出针对某个特定任务的度量距离函数。
三、度量学习内容
根据不同的任务来自主学习出针对某个特定任务的度量距离函数。
通过计算两张图片之间的相似度,使得输入图片被归入到相似度大的图片类别中去。

四、与经典识别网络相比
经典识别网络有一个bug:必须提前设定好类别数。 这也就意味着,每增加一个新种类,就要重新定义网络模型,并从头训练一遍。
比如我们要做一个门禁系统,每增加或减少一个员工(等于是一个新类别),就要修改识别网络并重新训练。很明显,这种做法在某些实际运用中很不科学。
因此,Metric Learning作为经典识别网络的替代方案,可以很好地适应某些特定的图像识别场景。
一种较好的做法,是丢弃经典神经网络最后的softmax层,改成直接输出一根feature vector,去特征库里面按照Metric Learning寻找最近邻的类别作为匹配项。
目前,Metric Learning已被广泛运用于人脸识别的日常运用中。
边栏推荐
- Research and Analysis on the development of China's Melamine Industry from 2022 to 2028 and market prospect forecast report
- 反走样/抗锯齿技术
- 【LeetCode】209. Minimum length subarray
- 2022 heavyweight: growth law - skillfully use digital marketing to break through enterprise difficulties
- List of open source alternative projects of world famous Cloud Service SaaS companies
- C # reading table data in word
- [Part 8] semaphore source code analysis and application details [key points]
- Inventory of CV neural network models from 2021 to 2022
- 【LeetCode】69. Square root of X
- A 42 year old senior executive of a large factory reminds people aged 30-39 that these six habits that make you stronger should be developed as soon as possible
猜你喜欢

The carrying capacity of L2 level ADAS increased by more than 60% year-on-year in January, and domestic suppliers "emerged"

Hostvars in ansible

Wechat applet withdrawal function

Zhengzhou University of light industry -- development and sharing of harmonyos pet health system

The development trend of digital collections!

Gb28181 protocol -- alarm

Su embedded training day13 - file IO

Mysql concat_ WS, concat function use
![[Part 7] source code analysis and application details of cyclicbarrier [key]](/img/bc/8ba2b86e599539a29683a63d02f0f7.jpg)
[Part 7] source code analysis and application details of cyclicbarrier [key]

JVM foundation - > three ⾊ mark
随机推荐
【LeetCode】69. x 的平方根
C#读取word中表格数据
Theory + practice will help you master the dynamic programming method
China barcode decoder market trend report, technical innovation and market forecast
【LeetCode】103. Zigzag sequence traversal of binary tree
Anti aliasing / anti aliasing Technology
【LeetCode】69. Square root of X
Sword finger offer series - 47 Maximum value of gifts
Zabbix的功能介绍和常用术语
在同花顺开户安全么 ,证券开户怎么开户流程
【LeetCode】5. 最长回文子串
Research Report on market supply and demand and strategy of China's digital camera lens industry
Qt Quick 3D学习:鼠标拾取物体
web3 原则和去中心化
Colab教程(超级详细版)及Colab Pro/Colab Pro+使用评测
Research and Analysis on the development of China's Melamine Industry from 2022 to 2028 and market prospect forecast report
Flutter series part: detailed explanation of GridView layout commonly used in flutter
Global and Chinese Melamine Industry Development Research and prospect trend report 2022-2028
【建议收藏】通俗易懂图解网络知识-第一篇
Function introduction and common terms of ZABBIX