当前位置:网站首页>[radar] radar signal online sorting based on kernel clustering with matlab code
[radar] radar signal online sorting based on kernel clustering with matlab code
2022-07-28 19:13:00 【Matlab scientific research studio】
1 Content introduction
Radar signal sorting is a necessary function of modern radar reconnaissance equipment ‚ It uses the measured radar signal parameters ‚ Separate randomly overlapping radar signals into independent radar signal columns ‚ Lay a solid foundation for the final radar signal recognition . In Modern Warfare ‚ The signal environment of radar reconnaissance receiver is becoming more and more dense ‚ More and more complex . The traditional signal sorting is mainly based on the idea of Statistics ‚ Through the pulse repetition period of the pulse sequence (PRI) analysis ‚ basis PRI Modulation mode of ‚ Sort out the corresponding radar signals . But this method has a large amount of computation 、 Slow speed 、 The accuracy and signal parameter utilization are not high . This paper will use kernel method to improve fuzzy clustering ‚ Applied to radar signal sorting ‚ And the simulation test is carried out stay Before kernel fuzzy clustering ‚ First, a large number of radar sequence signals are diluted . The reconnaissance opportunity receives signals from radiation sources in all directions at the same time ‚ Because the space position of radar is not It will mutate ‚ So the direction of arrival of the signal (DOA) Parameters will not jump ‚DOA From the physical position, we can distinguish the radiation sources in different directions . actually ‚ The signal to be sorted is the signal mixed by multiple radiation sources from the same direction . therefore ‚ accurate DOA It is a powerful sorting parameter ‚ With accurate DOA As a dense signal flow, pre sorting is an important way to solve the reliable sorting of various special radar signals . There will be a lot of 、 Dense sequence signal data press DOA Diluted into several data sets ‚ In pulse width modulation (PDW) Medium repetition rate (RF)‚ Pulse width (PW) Relatively fixed ‚ Pulse amplitude (PA) Is an uncertain parameter ‚ It cannot be used as the basis for sorting and judgment .
2 Simulation code
<span style="color:#333333"><span style="background-color:rgba(0, 0, 0, 0.03)"><code><span style="color:#dd1144">%% use RBF nucleus ,K(X1,X2)=exp(-a*||X1-X2||)</span></code><code>%% Initialization data </code><code>clc</code><code>close all</code><code></code><code>a=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">05</span>;% Kernel function parameters </code><code>e=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">05</span>;% Look for the similarity measurement threshold of the superior class </code><code>d=<span style="color:#0e9ce5">5</span>;% Share data to determine the number of vectors of merged classes </code><code>s=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">1</span>;% Initial step </code><code>T=<span style="color:#0e9ce5">100</span>;% Eliminate noise sampling interval </code><code>n=<span style="color:#0e9ce5">3</span>;% Eliminate noise threshold </code><code>a<span style="color:#0e9ce5">0</span>=<span style="color:#0e9ce5">1</span>;% Initial parameter of penalty item </code><code>num=<span style="color:#0e9ce5">1000</span>;%</code><code>q=<span style="color:#0e9ce5">0</span>.<span style="color:#0e9ce5">01</span>;% Variance parameter </code><code></code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span>% Simulation data is not sorted <span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span>%</code><code>signal1=signal_create(num,q);</code><code>figure(<span style="color:#0e9ce5">1</span>);</code><code>title(<span style="color:#dd1144">' The data distribution '</span>);</code><code>plot(signal1(<span style="color:#dd1144">:</span>,<span style="color:#0e9ce5">1</span>),signal1(<span style="color:#dd1144">:</span>,<span style="color:#0e9ce5">2</span>),<span style="color:#dd1144">'.b'</span>);</code><code>hold on;</code><code></code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span>% Create a new class <span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%</span></code><code>Cdata=cell(1,1000);% Store each type </code><code>Adata=cell(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1000</span>);% Store the weight of class vector </code><code>Pdata=zeros(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1000</span>);% Offset </code><code>N=zeros(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1000</span>);% The total number of various vectors </code><code>share_kind=zeros(<span style="color:#0e9ce5">1000</span>,<span style="color:#0e9ce5">2</span>);% Shared data </code><code>share_num=<span style="color:#0e9ce5">0</span>;</code><code></code><code>m=<span style="color:#0e9ce5">1</span>;% Number of classes </code><code>Cdata{<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>}(<span style="color:#0e9ce5">1</span>,<span style="color:#dd1144">:</span>)=signal1(<span style="color:#0e9ce5">1</span>,<span style="color:#dd1144">:</span>);% The first <span style="color:#0e9ce5">1</span> The first vector of the class </code><code>Adata{<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>}(<span style="color:#0e9ce5">1</span>,<span style="color:#0e9ce5">1</span>)=s;</code><code>Pdata(<span style="color:#0e9ce5">1</span>)=s;</code><code>N(<span style="color:#0e9ce5">1</span>)=<span style="color:#0e9ce5">1</span>;</code><code>num_data=<span style="color:#0e9ce5">1</span>;% The number of signal vectors has been determined </code><code>f=<span style="color:#0e9ce5">0</span>;</code><code></code><code><span style="color:#ca7d37">for</span> j=<span style="color:#0e9ce5">1</span><span style="color:#dd1144">:</span><span style="color:#0e9ce5">2999</span></code><code> num_data=num_data+<span style="color:#0e9ce5">1</span>; </code><code><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%% Eliminate noise %</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span><span style="color:#dd1144">%%%</span></code><code>% <span style="color:#ca7d37">if</span> j mod <span style="color:#0e9ce5">100</span>==<span style="color:#0e9ce5">0</span></code><code>% </code><code>% <span style="color:#ca7d37">end</span></code><code>,Pdata,m ] = delete_kind( Cdata,Adata,Pdata,N,m,m_out(i));</code><code> <span style="color:#ca7d37">end</span></code><code><span style="color:#ca7d37">end</span></code><code></code><code><span style="color:#ca7d37">end</span></code><code></code><code></code><code></code><code></code><code></code><code></code></span></span>3 Running results

4 reference
[1] Yu Xinxing , Wang Yong . Radar signal sorting method based on on-line kernel clustering [J]. Computer engineering , 2012, 38(3):270-272.
[2] Ksssssss , Luo Luqin , Zhao Guixi . Radar signal sorting algorithm based on kernel fuzzy clustering [J]. Ship electronic countermeasure , 2009, 32(4):4.
[3] Wang Yili , Yang Yuming . A radar signal sorting algorithm based on improved spectral clustering .
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- My creation anniversary -- July 25th, 2022
- UE4.25 Slate源码解读
- What does real HTAP mean to users and developers?
- Is there a future for changing careers in learning software testing?
- QT function optimization: QT 3D gallery
- Chinese enterprise service industry market in 2022
- Live broadcast platform software development, JS implementation by alphabetical order
- Regular expressions related to face-to-face orders of major express companies in JS
- How big is it suitable for learning software testing?
- BM14 链表的奇偶重排
猜你喜欢

How does the mqtt server built with emqx forward data and save it to the cloud database?

UE4.25 Slate源码解读

关于ASM冗余问题

From Bayesian filter to Kalman filter (zero)

Why app uses JSON protocol to interact with server: serialization related knowledge

BM11 链表相加(二)

uwb模块实现人员精确定位,超宽带脉冲技术方案,实时厘米级定位应用

How to use the white list function of the video fusion cloud service easycvr platform?

Interpretation of ue4.25 slate source code

2、 Uni app login function page Jump
随机推荐
Implementation of grayscale publishing with haproxy
Mongodb initialization
About ASM redundancy
6-20漏洞利用-proftpd测试
Mongodb database shell command execution
AI has changed thousands of industries. How can developers devote themselves to the new "sound" state of AI voice
Introduction and advanced MySQL (7)
Configuration tutorial: how does the organizational structure of the new version of easycvr (v2.5.0) cascade to the superior platform?
BM16 删除有序链表中重复的元素-II
直播平台软件开发,js实现按照首字母排序
Redis advantages and data structure related knowledge
Redis cache avalanche, penetration, breakdown, bloom filter, detailed explanation of distributed lock
How to use the white list function of the video fusion cloud service easycvr platform?
OAI L3 and L2 interface analysis
N32替换STM32,这些细节别忽略!
Differences between RDB and AOF for redis persistence
Win11电脑摄像头打开看不见,显示黑屏如何解决?
QT - CPP database operation
Special Lecture 6 tree DP learning experience (long-term update)
Wechat official account custom sharing and updateappmessagesharedata are all successful. Why is it a link that is shared?