当前位置:网站首页>IFM网络详解及torch复现
IFM网络详解及torch复现
2022-08-03 05:29:00 【WGS.】
IFM网络详解
网络结构代码
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from itertools import combinations
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader, TensorDataset
import torch.nn.functional as F
# import torch.utils.data as Data
from torchkeras import summary
from sklearn.preprocessing import LabelEncoder
from tools import *
import BaseModel
class FM(nn.Module):
''' without linear term and bias '''
def __init__(self):
super(FM, self).__init__()
def forward(self, inputs):
# (batch_size, field_size, embedding_size)
fm_input = inputs
square_of_sum = torch.pow(torch.sum(fm_input, dim=1, keepdim=True), 2)
sum_of_square = torch.sum(fm_input * fm_input, dim=1, keepdim=True)
cross_term = square_of_sum - sum_of_square
cross_term = 0.5 * torch.sum(cross_term, dim=2, keepdim=False)
# (batch_size, 1)
return cross_term
class Linear_W(nn.Module):
def __init__(self, dense_nums):
super(Linear_W, self).__init__()
self.dense_nums = dense_nums
if dense_nums is not None or dense_nums != 0:
self.weight = nn.Parameter(torch.Tensor(dense_nums, 1))
torch.nn.init.normal_(self.weight, mean=0, std=0.01)
def forward(self, sparse_inputs, dense_inputs=None, sparse_feat_refine_weight=None):
linear_logit = torch.zeros([sparse_inputs.shape[0], 1])
sparse_logit = sparse_inputs * sparse_feat_refine_weight.unsqueeze(-1)
sparse_logit = torch.sum(sparse_logit, dim=-1, keepdim=False)
sparse_logit = torch.unsqueeze(torch.sum(sparse_logit, dim=-1, keepdim=False), dim=-1)
linear_logit += sparse_logit
if dense_inputs is not None:
dense_logit = torch.matmul(dense_inputs, self.weight)
linear_logit += dense_logit
return linear_logit
class IFM(nn.Module):
def __init__(self, sparse_fields, dense_nums, emb_dim=8, dnn_hidden_units=(256, 128), use_bn=True, dropout=0.2, l2_reg_dnn=0):
super(IFM, self).__init__()
self.sparse_field_num = len(sparse_fields)
self.offsets = np.array((0, *np.cumsum(sparse_fields)[:-1]), dtype=np.longlong)
self.embedding = nn.Embedding(sum(sparse_fields) + 1, embedding_dim=emb_dim)
torch.nn.init.xavier_uniform_(self.embedding.weight.data)
# FEN
self.dnn_hidden_units = dnn_hidden_units
dnn_layers = []
self.dnn_input_dim = self.sparse_field_num * emb_dim
input_dim = self.sparse_field_num * emb_dim
for hidden in dnn_hidden_units:
dnn_layers.append(nn.Linear(input_dim, hidden))
if use_bn: dnn_layers.append(nn.BatchNorm1d(hidden))
dnn_layers.append(nn.ReLU())
dnn_layers.append(nn.Dropout(p=dropout))
input_dim = hidden
self.factor_estimating_net = nn.Sequential(*dnn_layers)
for name, tensor in self.factor_estimating_net.named_parameters():
if 'weight' in name:
nn.init.normal_(tensor, mean=0, std=0.01)
# P
self.transform_weight_matrix_P = nn.Linear(dnn_hidden_units[-1], self.sparse_field_num, bias=False)
self.linear_model = Linear_W(dense_nums=dense_nums)
self.fm = FM()
def forward(self, inputs):
dense_inputs, sparse_inputs = inputs[:, :13], inputs[:, 13:]
sparse_inputs = sparse_inputs.long()
sparse_inputs = sparse_inputs + sparse_inputs.new_tensor(self.offsets).unsqueeze(0)
spare_emb = self.embedding(sparse_inputs) # (None, field_num, emb_dim)
# FEN
dnn_output = self.factor_estimating_net(spare_emb.view(-1, self.dnn_input_dim))
dnn_output = self.transform_weight_matrix_P(dnn_output) # m'_{x} = U_x * P
input_aware_factor = self.sparse_field_num * dnn_output.softmax(1) # input_aware_factor m_{x,i}
# Reweighting
logit = self.linear_model(spare_emb, dense_inputs, sparse_feat_refine_weight=input_aware_factor) # w_{x,i} = m_{x,i} \times w_i
refined_fm_input = spare_emb * input_aware_factor.unsqueeze(-1) # v_{x,i} = m_{x,i} \times v_i
logit += self.fm(refined_fm_input)
return torch.sigmoid(logit.squeeze(-1))
训练代码
class BaseModel():
def __init__(self, net):
super(BaseModel, self).__init__()
self.net = net
def fit(self, train_loader, val_loader, epochs, loss_function, optimizer, metric_name):
start_time = time.time()
print("\n" + "********** start training **********")
columns = ["epoch", "loss", *metric_name, "val_loss"] + ['val_' + mn for mn in metric_name]
dfhistory = pd.DataFrame(columns=columns)
''' 训练 '''
for epoch in range(1, epochs + 1):
printlog("Epoch {0} / {1}".format(epoch, epochs))
step_start = time.time()
step_num = 0
train_loss = []
train_pred_probs, train_y, train_pre = [], [], []
self.net.train()
for batch, (x, y) in enumerate(train_loader):
step_num += 1
# 梯度清零
optimizer.zero_grad()
# 正向传播求损失
pred_probs = self.net(x)
loss = loss_function(pred_probs, y.float().detach())
# loss = loss_function(pred, y)
# 反向传播求梯度
loss.backward()
optimizer.step()
train_loss.append(loss.item())
train_pred_probs.extend(pred_probs.tolist())
train_y.extend(y.tolist())
train_pre.extend(torch.where(pred_probs > 0.5, torch.ones_like(pred_probs), torch.zeros_like(pred_probs)))
''' 验证 '''
val_loss = []
val_pred_probs, val_y, val_pre = [], [], []
self.net.eval()
# 不参与梯度计算
with torch.no_grad():
for batch, (x, y) in enumerate(val_loader):
pred_probs = self.net(x)
loss = loss_function(pred_probs, y.float().detach())
val_loss.append(loss.item())
val_pred_probs.extend(pred_probs.tolist())
val_y.extend(y.tolist())
val_pre.extend(
torch.where(pred_probs > 0.5, torch.ones_like(pred_probs), torch.zeros_like(pred_probs)))
''' 一次epoch结束 记录日志 '''
epoch_loss, epoch_val_loss = np.mean(train_loss), np.mean(val_loss)
train_auc = roc_auc_score(y_true=train_y, y_score=train_pred_probs)
train_acc = accuracy_score(y_true=train_y, y_pred=train_pre)
val_auc = roc_auc_score(y_true=val_y, y_score=val_pred_probs)
val_acc = accuracy_score(y_true=val_y, y_pred=val_pre)
dfhistory.loc[epoch - 1] = (epoch, epoch_loss, train_acc, train_auc, epoch_val_loss, val_acc, val_auc)
step_end = time.time()
print("step_num: %s - %.1fs - loss: %.5f accuracy: %.5f auc: %.5f - val_loss: %.5f val_accuracy: %.5f val_auc: %.5f"
% (step_num, (step_end - step_start) % 60, epoch_loss, train_acc, train_auc, epoch_val_loss, val_acc, val_auc))
end_time = time.time()
print('********** end of training run time: {:.0f}分 {:.0f}秒 **********'.format((end_time - start_time) // 60,
(end_time - start_time) % 60))
print()
return dfhistory
def evaluate(self, val_X, val_y):
val_X = torch.tensor(val_X).float()
pred_probs = self.net(val_X).data
pred = torch.where(pred_probs > 0.5, torch.ones_like(pred_probs), torch.zeros_like(pred_probs))
precision = np.around(metrics.precision_score(val_y, pred), 4)
recall = np.around(metrics.recall_score(val_y, pred), 4)
accuracy = np.around(metrics.accuracy_score(val_y, pred), 4)
f1 = np.around(metrics.f1_score(val_y, pred), 4)
auc = np.around(metrics.roc_auc_score(val_y, pred_probs), 4)
loss = np.around(metrics.log_loss(val_y, pred), 4)
acc_condition, precision_condition, recall_condition = self.accDealWith2(val_y, pred)
return precision, recall, accuracy, f1, auc, loss, acc_condition, precision_condition, recall_condition
def predict(self, x):
pred_probs = self.net(torch.tensor(x).float()).data
print(pred_probs)
pred = torch.where(pred_probs > 0.5, torch.ones_like(pred_probs), torch.zeros_like(pred_probs))
print(pred)
def plot_metric(self, dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_' + metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation ' + metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_" + metric, 'val_' + metric])
plt.show()
def accDealWith2(self, y_test, y_pre):
lenall = len(y_test)
if type(y_test) != list:
y_test = y_test.flatten()
pos = 0
pre = 0
rec = 0
precisoinlen = 0
recallLen = 0
for i in range(lenall):
# 准确率
if y_test[i] == y_pre[i]:
pos += 1
# 精确率
if y_pre[i] == 1:
pre += 1
if y_test[i] == 1:
precisoinlen += 1
# 召回率
if y_test[i] == 1:
rec += 1
if y_pre[i] == 1:
recallLen += 1
acc_condition = '预测对的:{},总样本:{}'.format(pos, lenall)
if pre != 0:
precision_condition = '预测为正的样本数:{},其中实际为正的样本数:{},精确率:{}'.format(pre, precisoinlen,
np.around(precisoinlen / pre, 4))
else:
precision_condition = '预测为正的样本数:{},其中实际为正的样本数:{},精确率:{}'.format(pre, precisoinlen, 0.0)
if rec != 0:
recall_condition = '正例样本:{},正例中预测正确的数量:{},召回率:{}'.format(rec, recallLen, np.around(recallLen / rec, 4))
else:
recall_condition = '正例样本:{},正例中预测正确的数量:{},召回率:{}'.format(rec, recallLen, 0.0)
return acc_condition, precision_condition, recall_condition
main
if __name__ == '__main__':
data = pd.read_csv('./data/criteo_sampled_data_test.csv')
# I1-I13:总共 13 列数值型特征
# C1-C26:共有 26 列类别型特征
dense_cols = ['I' + str(i) for i in range(1, 14)]
sparse_cols = ['C' + str(i) for i in range(1, 27)]
stat_pnrate_pd(data=data, labname='label', message='criteo_sampled_data_test')
data_X = data[dense_cols + sparse_cols]
data_y = data['label']
sparse_fields = data_X[sparse_cols].max().values + 1
sparse_fields = sparse_fields.astype(np.int32)
print(sparse_fields)
dense_fields_num = 13
tmp_X, test_X, tmp_y, test_y = train_test_split(data_X, data_y, test_size=0.01, random_state=42, stratify=data_y)
train_X, val_X, train_y, val_y = train_test_split(tmp_X, tmp_y, test_size=0.01, random_state=42, stratify=tmp_y)
print(train_X.shape)
print(val_X.shape)
train_set = TensorDataset(torch.tensor(train_X.values).float(), torch.tensor(train_y.values).float())
val_set = TensorDataset(torch.tensor(val_X.values).float(), torch.tensor(val_y.values).float())
train_loader = DataLoader(dataset=train_set, batch_size=2048, shuffle=True)
val_loader = DataLoader(dataset=val_set, batch_size=2048, shuffle=False)
net = IFM(sparse_fields=sparse_fields, dense_nums=dense_fields_num, emb_dim=10, dnn_hidden_units=(256, 128, 64), use_bn=True, dropout=0.2, l2_reg_dnn=0.1)
loss_function = nn.BCELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
base = BaseModel.BaseModel(net=net)
dfhistory = base.fit(train_loader=train_loader, val_loader=val_loader,
epochs=1, loss_function=loss_function, optimizer=optimizer, metric_name=['accuracy', 'auc'])
summary(model=net, input_data=torch.tensor(val_X.values).float())
边栏推荐
猜你喜欢
随机推荐
C#程序默认以管理员权限打开
流式低代码编程,拖拽节点画流程图并运行
【onnx 输入尺寸】修改pytorch生成的onnx模型的输入尺寸
【项目案例】配置小型网络WLAN基本业务示例
Shell脚本--信号发送与捕捉
ESXI中损坏虚拟机数据如何找回
mysql 时间字段默认设置为当前时间
TFS(Azure DevOps)禁止多人同时签出
我的Go+语言初体验——祝福留言小系统,让她也可以感受到你的祝福
C#操作FTP上传文件后检查上传正确性
使用Powershell批量导入Task
【dllogger bug】AttributeError: module ‘dllogger‘ has no attribute ‘StdOutBackend‘
MySQL的主从复制
sql中 exists的用法
Podman一篇就学会
超全!9种PCB表面处理工艺大对比
Oracle Common Commands - Basic Commands
SVN账号配置权限
2021-06-14
mysql事务与多版本并发控制