当前位置:网站首页>[image registration] improved SAR image registration based on sar-sift with matlab code
[image registration] improved SAR image registration based on sar-sift with matlab code
2022-06-29 00:13:00 【Matlab scientific research studio】
1 brief introduction
Compared to traditional SIFT Algorithm ,SAR-SIFT It is mainly modified in two aspects , The first is to improve the pixel gradient calculation method , The difference is replaced by the ratio . The second is to improve the method of generating the final descriptor . Through the modification of these two aspects , This makes this method more suitable for general multiplicative speckle noise SAR Images . about SAR Multiplicative noise in images ,SAR-SIFT To some extent, compared with the original SIFT Better adaptability , But when SAR When there are strong noise spots in the image ,SAR-SIFT There will also be a large number of outliers when the algorithm extracts feature points . in the light of SAR Strong multiplicative speckle noise in pictures , First of all, with the help of SAR-SIFT The algorithm extracts features , Then, sparse coding is used to effectively use feature clustering to eliminate the outliers caused by strong speckle noise in the process of feature extraction . Thus through SAR-SIFT Algorithm combination FSC Algorithm to suppress SAR Noise spots in the image , Improve SAR The accuracy and robustness of image registration .





2 Part of the code
function [k_percentile]=compute_k_percentile_auto(gradient_x,gradient_y,perc)
% This function calculates a contrast parameter k, This contrast parameter is used to calculate the diffusion coefficient
%gradient_x Is the gradient in the horizontal direction ,gradient_y Is the gradient in the vertical direction
%perc Is the percentile of the gradient histogram , The default value is 0.7,k The value of is determined according to the percentile
% The conductivity functions are all k The increasing function of , So for the same gradient value , If k It's worth more , Then the value of conduction coefficient is larger
% Therefore, the diffusion is large , Severe smoothness , So we can see that , If you want to keep the details, you need smaller k value
% This function automatically calculates k value , So there is no need to specify bin Size
% Histogram interval
unit=0.005;
% Ignore the boundary to calculate the maximum value of the gradient
gradient=sqrt(gradient_x.^2+gradient_y.^2);
[M,N]=size(gradient);
temp_gradient=gradient(2:M-1,2:N-1);
% Ignore Boundary Calculation histogram
temp_gradient=temp_gradient(temp_gradient>0);
max_gradient=max(max(temp_gradient));
min_gradient=min(min(temp_gradient));
temp_gradient=round((temp_gradient-min_gradient)/unit);
nbin=round((max_gradient-min_gradient)/unit);
hist=zeros(1,nbin+1);
[M1,N1]=size(temp_gradient);
sum_pix=M1*N1;% Number of non-zero pixel gradients
% Calculate the histogram
for i=1:1:M1
for j=1:1:N1
hist(temp_gradient(i,j)+1)=hist(temp_gradient(i,j)+1)+1;
end
end
% Histogram percentile
nthreshold=perc*sum_pix;
nelements=0;
temp_i=0;
for i=1:1:nbin+1
nelements=nelements+hist(i);
if(nelements>=nthreshold)
temp_i=i;
break;
end
end
% k_percentile=max_gradient*(temp_i)/(nbin+1);
k_percentile=(temp_i-1)*unit+min_gradient;
end
3 Simulation results





4 reference
[1] Li Pei , Jiang Gang , and Ma Qianli . " be based on SAR-SIFT The improved SAR Image registration ." Mapping Bulletin (2021).
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
边栏推荐
- [machine learning] numerical analysis 02 -- finding roots of arbitrary equations
- TypeScript--第四节:函数
- Yyds dry goods count 【 vs code work record III 】 set vs code format
- SCP copy folder
- Introduction to JVM working principle
- TypeScript -- 第一节:基础类型
- 每日一题: 数组中数字出现的次数
- 三個pwn題
- 这玩意叫跳表?
- Stm32f407 ------- RTC real time clock
猜你喜欢

MySQL 8.0 above reporting 2058 solution
JVM底层又是如何实现synchronized的

Cross domain problem of canvas drawing caused by background image cache

oracle 去掉html标签

Single machine multi instance MySQL master-slave replication

6.28 learning content

MapReduce案例

这玩意叫跳表?

10. Yolo series

The second session of question swiping and clock out activity -- solving the switching problem with recursion as the background (2)
随机推荐
The second session of question swiping and clock out activity -- solving the switching problem with recursion as the background (III)
Reading notes of English grammar new thinking Basic Edition 2 (I)
"Five considerations" for safe use of the Internet
MapReduce case
Chrome浏览器的基本使用
TypeScript --第三节:接口
Phoenix安装教程
【C Primer Plus第二章課後編程題】
MNIST handwritten numeral recognition demo based on pytorch framework
这玩意叫跳表?
好用免费的PPT模板
TypeScript -- 第二节:变量声明
websocket-js连接如何携带token验证
[machine learning] numerical analysis 02 -- finding roots of arbitrary equations
力扣(LeetCode)178. 分数排名(2022.06.27)
剑指 Offer 12. 矩阵中的路径
Stm32f407 ------ running lamp and buzzer
每日一题: 数组中数字出现的次数
Use and principle of handlerthread
Typescript -- Section 5: classes