当前位置:网站首页>Subspace of 20211004 matrix

Subspace of 20211004 matrix

2022-06-13 09:03:00 What's my name

Theorem 1.4. 1.4. 1.4. If V 1 , V 2 V_{1}, V_{2} V1,V2 It's a number field K K K Linear spaces over V V V Two subspaces of , So their intersection V 1 ∩ V 2 V_{1} \cap V_{2} V1V2 It's also V V V The subspace of .

Theorem 1.5. 1.5. 1.5. If V 1 , V 2 V_{1}, V_{2} V1,V2 It's all number fields K K K Linear spaces over V V V The subspace of , So their sum V 1 + V 2 V_{1}+V_{2} V1+V2 It's also V V V The subspace of .

Theorem 1.6. 1.6. 1.6. ( Dimension formula ) If V 1 , V 2 V_{1}, V_{2} V1,V2 It's a number field K K K Linear spaces over V V V Two subspaces of , Then there is the following formula
dim ⁡ V 1 + dim ⁡ V 2 = dim ⁡ ( V 1 + V 2 ) + dim ⁡ ( V 1 ∩ V 2 ) \operatorname{dim} V_{1}+\operatorname{dim} V_{2}=\operatorname{dim}\left(V_{1}+V_{2}\right)+\operatorname{dim}\left(V_{1} \cap V_{2}\right) dimV1+dimV2=dim(V1+V2)+dim(V1V2)

Theorem 1.4 A good understanding , For theorem 1.5, First of all, make it clear V V V yes Linear space , give an example : V 1 V_{1} V1 yes xoy Plane , V 2 V_{2} V2 yes oz A straight line , that V 1 + V 2 V_{1}+V_{2} V1+V2 It's not simple xoy Plane +oz A straight line , Because this does not satisfy the linear condition , We can work out V 1 + V 2 V_{1}+V_{2} V1+V2 yes o-xyz three-dimensional space .

in other words V 1 + V 2 V_{1}+V_{2} V1+V2 Is to find the smallest , contain V 1 V_{1} V1 and V 2 V_{2} V2 Linear space .

原网站

版权声明
本文为[What's my name]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/164/202206130854530881.html