当前位置:网站首页>Subspace of 20211004 matrix
Subspace of 20211004 matrix
2022-06-13 09:03:00 【What's my name】
Theorem 1.4. 1.4. 1.4. If V 1 , V 2 V_{1}, V_{2} V1,V2 It's a number field K K K Linear spaces over V V V Two subspaces of , So their intersection V 1 ∩ V 2 V_{1} \cap V_{2} V1∩V2 It's also V V V The subspace of .
Theorem 1.5. 1.5. 1.5. If V 1 , V 2 V_{1}, V_{2} V1,V2 It's all number fields K K K Linear spaces over V V V The subspace of , So their sum V 1 + V 2 V_{1}+V_{2} V1+V2 It's also V V V The subspace of .
Theorem 1.6. 1.6. 1.6. ( Dimension formula ) If V 1 , V 2 V_{1}, V_{2} V1,V2 It's a number field K K K Linear spaces over V V V Two subspaces of , Then there is the following formula
dim V 1 + dim V 2 = dim ( V 1 + V 2 ) + dim ( V 1 ∩ V 2 ) \operatorname{dim} V_{1}+\operatorname{dim} V_{2}=\operatorname{dim}\left(V_{1}+V_{2}\right)+\operatorname{dim}\left(V_{1} \cap V_{2}\right) dimV1+dimV2=dim(V1+V2)+dim(V1∩V2)
Theorem 1.4 A good understanding , For theorem 1.5, First of all, make it clear V V V yes Linear space , give an example : V 1 V_{1} V1 yes xoy Plane , V 2 V_{2} V2 yes oz A straight line , that V 1 + V 2 V_{1}+V_{2} V1+V2 It's not simple xoy Plane +oz A straight line , Because this does not satisfy the linear condition , We can work out V 1 + V 2 V_{1}+V_{2} V1+V2 yes o-xyz three-dimensional space .
in other words V 1 + V 2 V_{1}+V_{2} V1+V2 Is to find the smallest , contain V 1 V_{1} V1 and V 2 V_{2} V2 Linear space .
边栏推荐
- Summary of the first retrospective meeting
- [QNX hypervisor 2.2 user manual] 4.5 building a guest
- 你不知道的stringstream的用法
- Drill down to protobuf - Introduction
- 如何成为白帽子黑客?我建议你从这几个阶段开始学习
- Simulink的Variant Model和Variant Subsystem用法
- The Jenkins console does not output custom shell execution logs
- QT multithreaded TCP server
- Cesium displays a pop-up box at the specified position and moves with the map
- 图数据库Neo4j介绍
猜你喜欢

ADT Google browser plug-in ad Terminator

20211020 段院士全驱系统

Browser render passes

网络安全漏洞分析之重定向漏洞分析

【安全】零基础如何从0到1逆袭成为安全工程师
Drill down to protobuf - Introduction

教程篇(5.0) 02. 管理 * FortiEDR * Fortinet 网络安全专家 NSE 5

【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro

【网络安全】SQL注入新思维之webshell提权

Screenshot of cesium implementation scenario
随机推荐
国债逆回购能开户吗,国债逆回购在APP上可以直接开通券商安全吗 ,买股票怎么网上开户
À propos des principes de chiffrement et de décryptage RSA
Use of grep
教程篇(5.0) 01. 产品简介及安装 * FortiEDR * Fortinet 网络安全专家 NSE 5
redis
transforms. ColorJitter(0.3, 0, 0, 0)
Redis distributed cluster setup
Redirect vulnerability analysis of network security vulnerability analysis
Judgment of single exclamation point and double exclamation point in JS
Jfinal and swagger integration
turf. JS usage
Tensorflow1.14 corresponds to numpy version
教程篇(5.0) 03. 安全策略 * FortiEDR * Fortinet 网络安全专家 NSE 5
ADT Google browser plug-in ad Terminator
Uni app subcontracting loading and optimization
[QNX hypervisor 2.2 user manual] 4.5.1 build QNX guest
Installation of sonarqube code quality management platform (to be continued)
20211108 A转置乘A是正定矩阵吗?A转置乘A是正定矩阵的充分必要条件是什么?
MySQL startup error: innodb: operating system error number 13 in a file operation
What are the bank financial products? How long is the liquidation period?