当前位置:网站首页>【GCN-RS】Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for RS (SIGIR‘22)
【GCN-RS】Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for RS (SIGIR‘22)
2022-07-25 12:00:00 【chad_ lee】
Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation (SIGIR’22)

This article attacks that graph contrast learning does not necessarily extend graph structure ,SGL That method is complex and the benefit is weak :

The article is in SGL On the basis of , The test does not amplify the graph structure , Direct comparative learning :
L c l = ∑ i ∈ B − log exp ( z i ′ ⊤ z i ′ ′ / τ ) ∑ j ∈ B exp ( z i ′ ⊤ z j ′ ′ / τ ) \mathcal{L}_{c l}=\sum_{i \in \mathcal{B}}-\log \frac{\exp \left(\mathbf{z}_{i}^{\prime \top} \mathbf{z}_{i}^{\prime \prime} / \tau\right)}{\sum_{j \in \mathcal{B}} \exp \left(\mathbf{z}_{i}^{\prime \top} \mathbf{z}_{j}^{\prime \prime} / \tau\right)} Lcl=i∈B∑−log∑j∈Bexp(zi′⊤zj′′/τ)exp(zi′⊤zi′′/τ)
I have also done experiments , Set the molecule of this formula to 1, That is, the characterization is still similar without considering the structure of the amplification diagram ,NDCG Instead, the index rose higher , therefore SGL It's really not very useful .
This paper presents a very simple method , Directly in embedding Make a disturbance on , Fixed graph structure :

e i ′ = e i + Δ i ′ e i ′ ′ = e i + Δ i ′ ′ \begin{array}{r} e_{i}^{\prime}=e_{i}+\Delta_{i}^{\prime} \\ e_{i}^{\prime \prime}=e_{i}+\Delta_{i}^{\prime \prime} \end{array} ei′=ei+Δi′ei′′=ei+Δi′′
among Δ i ′ , Δ i ′ ′ \Delta_{i}^{\prime },\Delta_{i}^{\prime \prime} Δi′,Δi′′ They are random disturbances , Δ = Δ ˉ ⊙ sign ( e i ) , sign ( x ) , x < 0 \Delta=\bar{\Delta} \odot \operatorname{sign}\left(e_{i}\right), \operatorname{sign}(\mathrm{x}), x<0 Δ=Δˉ⊙sign(ei),sign(x),x<0 The output -1, otherwise 1. Δ ˉ ∼ U ( 0 , 1 ) \bar{\Delta} \sim U(0,1) Δˉ∼U(0,1). Therefore, these two disturbances can be regarded as in the primitive embedding The direction of , They have expanded a little . Then bring in comparative learning loss, You can use it .
In terms of implementation, it is simpler to be violent , Just on each floor embedding Just add disturbance :
E ′ = 1 L ( ( A ~ ( 0 ) + Δ ( 1 ) ) + ( A ~ ( A ~ E ( 0 ) + Δ ( 1 ) ) + Δ ( 2 ) ) ) + … + ( A ~ L E ( 0 ) + A ~ L − 1 Δ ( 1 ) + … + A ~ Δ ( L − 1 ) + Δ ( L ) ) ) \begin{array}{r} \mathbf{E}^{\prime}=\frac{1}{L}\left(\left(\tilde{\mathbf{A}}^{(0)}+\Delta^{(1)}\right)+\left(\tilde{\mathbf{A}}\left(\tilde{\mathrm{A}} \mathrm{E}^{(0)}+\Delta^{(1)}\right)+\Delta^{(2)}\right)\right)+\ldots \\ \left.+\left(\tilde{\mathbf{A}}^{L} \mathbf{E}^{(0)}+\tilde{\mathbf{A}}^{L-1} \Delta^{(1)}+\ldots+\tilde{\mathbf{A}} \Delta^{(L-1)}+\Delta^{(L)}\right)\right) \end{array} E′=L1((A~(0)+Δ(1))+(A~(A~E(0)+Δ(1))+Δ(2)))+…+(A~LE(0)+A~L−1Δ(1)+…+A~Δ(L−1)+Δ(L)))
边栏推荐
- 图神经网络用于推荐系统问题(IMP-GCN,LR-GCN)
- 对比学习的应用(LCGNN,VideoMoCo,GraphCL,XMC-GAN)
- Qin long, a technical expert of Alibaba cloud: a prerequisite for reliability assurance - how to carry out chaos engineering on the cloud
- brpc源码解析(四)—— Bthread机制
- flink sql client 连接mysql报错异常,如何解决?
- 微信公众号开发 入手
- PHP 上传ftp路径文件到外网服务器上 curl base64图片
- OneNET平台控制W5500开发板LED灯
- What is the difference between session and cookie?? Xiaobai came to tell you
- 30 sets of Chinese style ppt/ creative ppt templates
猜你喜欢

Chapter 4 linear equations

W5500上传温湿度到oneNET平台

【对比学习】Understanding the Behaviour of Contrastive Loss (CVPR‘21)

Review in the middle of 2022 | understand the latest progress of pre training model

【GCN多模态RS】《Pre-training Representations of Multi-modal Multi-query E-commerce Search》 KDD 2022

Learning to Pre-train Graph Neural Networks(图预训练与微调差异)

图神经网络用于推荐系统问题(IMP-GCN,LR-GCN)

brpc源码解析(六)—— 基础类socket详解

Javescript loop

对比学习的应用(LCGNN,VideoMoCo,GraphCL,XMC-GAN)
随机推荐
php curl post Length Required 错误设置header头
Oracle parsing XML with the same name
软件测试阶段的风险
LeetCode 50. Pow(x,n)
【GCN-RS】Region or Global? A Principle for Negative Sampling in Graph-based Recommendation (TKDE‘22)
pycharm连接远程服务器ssh -u 报错:No such file or directory
JS数据类型以及相互转换
【高并发】我用10张图总结出了这份并发编程最佳学习路线!!(建议收藏)
Experimental reproduction of image classification (reasoning only) based on caffe resnet-50 network
return 和 finally的执行顺序 ?各位大佬请看过来,
【USB设备设计】--复合设备,双HID高速(64Byte 和 1024Byte)
Arrays in JS
Management of software defects
【GCN-RS】MCL: Mixed-Centric Loss for Collaborative Filtering (WWW‘22)
brpc源码解析(五)—— 基础类resource pool详解
Transformer变体(Sparse Transformer,Longformer,Switch Transformer)
Start with the development of wechat official account
WIZnet嵌入式以太网技术培训公开课(免费!!!)
油猴脚本链接
Brief description of model deployment