当前位置:网站首页>【GCN-RS】Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for RS (SIGIR‘22)
【GCN-RS】Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for RS (SIGIR‘22)
2022-07-25 12:00:00 【chad_ lee】
Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation (SIGIR’22)

This article attacks that graph contrast learning does not necessarily extend graph structure ,SGL That method is complex and the benefit is weak :

The article is in SGL On the basis of , The test does not amplify the graph structure , Direct comparative learning :
L c l = ∑ i ∈ B − log exp ( z i ′ ⊤ z i ′ ′ / τ ) ∑ j ∈ B exp ( z i ′ ⊤ z j ′ ′ / τ ) \mathcal{L}_{c l}=\sum_{i \in \mathcal{B}}-\log \frac{\exp \left(\mathbf{z}_{i}^{\prime \top} \mathbf{z}_{i}^{\prime \prime} / \tau\right)}{\sum_{j \in \mathcal{B}} \exp \left(\mathbf{z}_{i}^{\prime \top} \mathbf{z}_{j}^{\prime \prime} / \tau\right)} Lcl=i∈B∑−log∑j∈Bexp(zi′⊤zj′′/τ)exp(zi′⊤zi′′/τ)
I have also done experiments , Set the molecule of this formula to 1, That is, the characterization is still similar without considering the structure of the amplification diagram ,NDCG Instead, the index rose higher , therefore SGL It's really not very useful .
This paper presents a very simple method , Directly in embedding Make a disturbance on , Fixed graph structure :

e i ′ = e i + Δ i ′ e i ′ ′ = e i + Δ i ′ ′ \begin{array}{r} e_{i}^{\prime}=e_{i}+\Delta_{i}^{\prime} \\ e_{i}^{\prime \prime}=e_{i}+\Delta_{i}^{\prime \prime} \end{array} ei′=ei+Δi′ei′′=ei+Δi′′
among Δ i ′ , Δ i ′ ′ \Delta_{i}^{\prime },\Delta_{i}^{\prime \prime} Δi′,Δi′′ They are random disturbances , Δ = Δ ˉ ⊙ sign ( e i ) , sign ( x ) , x < 0 \Delta=\bar{\Delta} \odot \operatorname{sign}\left(e_{i}\right), \operatorname{sign}(\mathrm{x}), x<0 Δ=Δˉ⊙sign(ei),sign(x),x<0 The output -1, otherwise 1. Δ ˉ ∼ U ( 0 , 1 ) \bar{\Delta} \sim U(0,1) Δˉ∼U(0,1). Therefore, these two disturbances can be regarded as in the primitive embedding The direction of , They have expanded a little . Then bring in comparative learning loss, You can use it .
In terms of implementation, it is simpler to be violent , Just on each floor embedding Just add disturbance :
E ′ = 1 L ( ( A ~ ( 0 ) + Δ ( 1 ) ) + ( A ~ ( A ~ E ( 0 ) + Δ ( 1 ) ) + Δ ( 2 ) ) ) + … + ( A ~ L E ( 0 ) + A ~ L − 1 Δ ( 1 ) + … + A ~ Δ ( L − 1 ) + Δ ( L ) ) ) \begin{array}{r} \mathbf{E}^{\prime}=\frac{1}{L}\left(\left(\tilde{\mathbf{A}}^{(0)}+\Delta^{(1)}\right)+\left(\tilde{\mathbf{A}}\left(\tilde{\mathrm{A}} \mathrm{E}^{(0)}+\Delta^{(1)}\right)+\Delta^{(2)}\right)\right)+\ldots \\ \left.+\left(\tilde{\mathbf{A}}^{L} \mathbf{E}^{(0)}+\tilde{\mathbf{A}}^{L-1} \Delta^{(1)}+\ldots+\tilde{\mathbf{A}} \Delta^{(L-1)}+\Delta^{(L)}\right)\right) \end{array} E′=L1((A~(0)+Δ(1))+(A~(A~E(0)+Δ(1))+Δ(2)))+…+(A~LE(0)+A~L−1Δ(1)+…+A~Δ(L−1)+Δ(L)))
边栏推荐
- WIZnet嵌入式以太网技术培训公开课(免费!!!)
- 创新突破!亚信科技助力中国移动某省完成核心账务数据库自主可控改造
- The bank's wealth management subsidiary accumulates power to distribute a shares; The rectification of cash management financial products was accelerated
- JS中的对象
- [MySQL learning 09]
- 已解决 Files‘ name is invalid or does not exist (1205)
- PHP one server sends pictures to another. Curl post file_ get_ Contents save pictures
- Innovation and breakthrough! AsiaInfo technology helped a province of China Mobile complete the independent and controllable transformation of its core accounting database
- 基于TCP/IP在同一局域网下的数据传输
- 什么是全局事件总线?
猜你喜欢

WIZnet嵌入式以太网技术培训公开课(免费!!!)

What is the global event bus?

'C:\xampp\php\ext\php_zip.dll' - %1 不是有效的 Win32 应用程序 解决

Brpc source code analysis (VI) -- detailed explanation of basic socket

JS数据类型以及相互转换

JS流程控制

油猴脚本链接

Return and finally? Everyone, please look over here,

PHP curl post x-www-form-urlencoded

Teach you how to configure S2E to UDP working mode through MCU
随机推荐
JS中的数组
Hardware peripherals =maixpy3
11. Reading rumors spread with deep learning
奉劝那些刚参加工作的学弟学妹们:要想进大厂,这些并发编程知识是你必须要掌握的!完整学习路线!!(建议收藏)
异构图神经网络用于推荐系统问题(ACKRec,HFGN)
[MySQL learning 08]
[electronic device notes 5] diode parameters and selection
剑指 Offer 22. 链表中倒数第k个节点
【USB设备设计】--复合设备,双HID高速(64Byte 和 1024Byte)
30套中国风PPT/创意PPT模板
JS运算符
【无标题】
JS interview question: handwriting throttle function
对比学习的应用(LCGNN,VideoMoCo,GraphCL,XMC-GAN)
MySQL historical data supplement new data
Objects in JS
阿里云技术专家秦隆:可靠性保障必备——云上如何进行混沌工程
Transformer变体(Routing Transformer,Linformer,Big Bird)
【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
Oil monkey script link