当前位置:网站首页>338. Counting Bits

338. Counting Bits

2022-06-22 12:26:00 Sterben_Da

338. Counting Bits

Easy

7064333Add to ListShare

Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n)ans[i] is the number of 1's in the binary representation of i.

Example 1:

Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10

Example 2:

Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

Constraints:

  • 0 <= n <= 105

Follow up:

  • It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
  • Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?

class Solution:
    def countBits(self, n: int) -> List[int]:
        """
        assert Solution().countBits(5) == [0, 1, 1, 2, 1, 2]
        assert Solution().countBits(2) == [0, 1, 1]
        
        参考解题思路:动态规划和位运算求解,dp[i]代表i二进制有几个1,
        若i二进制位结尾为0,则dp[i]=dp[i>>1],因为末尾是0了,1的个数与i算术右移一样
        若i二进制位结尾为1,则dp[i]=dp[i-1]+1,因为末尾是1了,就是让i-1的二进制位1的个数加上现在末尾一个1
        时间复杂度:O(n),空间复杂度:O(n)
        """

        dp = [0] * (n + 1)
        for i in range(1, n + 1):
            dp[i] = dp[i - 1] + 1 if i & 1 else dp[i >> 1]
        return dp

原网站

版权声明
本文为[Sterben_Da]所创,转载请带上原文链接,感谢
https://blog.csdn.net/Sterben_Da/article/details/125259874