当前位置:网站首页>Matrix analysis notes (I)
Matrix analysis notes (I)
2022-06-23 19:07:00 【Bachuan Xiaoxiaosheng】
Linear space
V V V Nonempty set , F F F Number field , In collection V V V Two algebraic operations addition are defined in + + + Multiply with number ⋅ \cdot ⋅ , And satisfy the operation law
- The law of addition exchange α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
- The law of combination of addition ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
- Zero element ∃ 0 ∈ V , send have to ∀ α ∈ V Yes α + 0 = α \exists 0 \in V, bring \forall \alpha \in V Yes \alpha + 0 = \alpha ∃0∈V, send have to ∀α∈V Yes α+0=α
- Negative element ∀ α ∈ V , all save stay β send have to α + β = 0 \forall \alpha \in V, All exist \beta bring \alpha + \beta =0 ∀α∈V, all save stay β send have to α+β=0
- 1 ⋅ α = α 1\cdot \alpha = \alpha 1⋅α=α
- The law of multiplication k ( l α ) = ( k l ) α k(l\alpha)=(kl)\alpha k(lα)=(kl)α
- Distributive law ( k + l ) α = k α + l α (k+l)\alpha=k\alpha + l\alpha (k+l)α=kα+lα
- Distributive law k ( α + β ) = k α + k β k(\alpha + \beta) = k\alpha +k\beta k(α+β)=kα+kβ
k , l ∈ F k,l\in F k,l∈F
call V V V It's a number field F F F Colinear space
Common linear spaces
- Vector space
- Function space
- Matrix space
- Polynomial space
Relevant concepts
- The linear table out
α = k 1 β 1 + . . . + k n β n \alpha=k_{1}\beta_{1}+...+k_{n}\beta_{n} α=k1β1+...+knβn - Linear correlation
0 = k 1 β 1 + . . . + k n β n k 1 . . . k n ≠ 0 0=k_{1}\beta_{1}+...+k_{n}\beta_{n}\\ k_{1}...k_{n}\neq 0 0=k1β1+...+knβnk1...kn=0 - Linearly independent
Non linear correlation - Maximum linear independent group
There is a set of linear independent vectors in a vector group , And each vector can be linearly expressed by the vectors in the independent group
Equivalent to a vector group - Rank
The number of maximal independent group vectors
Basic properties
- Vector groups with zero vectors are linearly correlated
- It's not about the whole ⇒ \Rightarrow ⇒ Not part of it , Part of it ⇒ \Rightarrow ⇒ It's all about
- A vector group with many vectors can be expressed linearly by a vector group with few vectors , Then a group of vectors with many vectors must be linearly correlated
- Rank unique but maximal independent group is not unique
- Vector group (Ⅰ) It can be a set of vectors (Ⅱ) The linear table out , Vector group (Ⅰ) The rank of ≤ \leq ≤ Vector group (Ⅱ) The rank of
- The equivalent vector group has the same rank
basal & coordinate & dimension
V V V by F F F Linear space , if V V V in n n n A linearly independent vector α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn, So that any vector can be represented by α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn The linear table out , namely
α = k 1 α 1 + . . . + k n α n \alpha=k_{1}\alpha_{1}+...+k_{n}\alpha_{n} α=k1α1+...+knαn
call α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn For the base , ( k 1 , . . . , k n ) T (k_{1},...,k_{n})^{T} (k1,...,kn)T Is the coordinate under the base , call V V V by n n n One dimensional linear space , Write it down as d i m V = n dimV=n dimV=n
The linear space we study is finite dimensional
Base transformation
set up α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn and β 1 , . . . , β n \beta_{1},...,\beta_{n} β1,...,βn by n n n One dimensional linear space V V V Two groups of substrates , The relationship is
β i = [ α 1 , . . . , α n ] [ α 1 i . . . α n i ] , i = 1 , . . . , n \beta_{i}=[\alpha_{1},...,\alpha_{n}] \begin{bmatrix} \alpha_{1i} \\ ... \\ \alpha_{ni} \end{bmatrix} ,i=1,...,n βi=[α1,...,αn]⎣⎡α1i...αni⎦⎤,i=1,...,n
Matrixing has
[ β 1 , . . . , β n ] = [ α 1 , . . . , α n ] [ a 11 . . . a 1 n ⋮ ⋱ ⋮ a n 1 . . . a n n ] [\beta_{1},...,\beta_{n}] =[\alpha_{1},...,\alpha_{n}] \begin{bmatrix} a_{11} & ... & a_{1n}\\ \vdots & \ddots & \vdots\\ a_{n1} & ... & a_{nn} \end{bmatrix} [β1,...,βn]=[α1,...,αn]⎣⎢⎡a11⋮an1...⋱...a1n⋮ann⎦⎥⎤
n n n A square matrix of order is called a transition matrix P P P
Transition matrix P P P reversible
Coordinate transformation
∀ ξ ∈ V \forall \xi \in V ∀ξ∈V, The coordinates under the two sets of bases are [ x 1 , . . . , x n ] T [x_{1},...,x_{n}]^{T} [x1,...,xn]T and [ y 1 , . . . , y n ] T [y_{1},...,y_{n}]^{T} [y1,...,yn]T, Then there are
[ x 1 , . . . , x n ] T = P [ y 1 , . . . , y n ] T [x_{1},...,x_{n}]^{T}=P[y_{1},...,y_{n}]^{T} [x1,...,xn]T=P[y1,...,yn]T
Linear subspace
set up V V V It's a number field F F F On the one n n n Dimensional subspace , W W W by V V V A nonempty subset of , If yes ∀ α , β ∈ W \forall \alpha,\beta\in W ∀α,β∈W as well as ∀ k , l ∈ F \forall k , l \in F ∀k,l∈F Yes
k α + l β ∈ W k\alpha+l\beta \in W kα+lβ∈W
call W W W by V V V The subspace of
Ordinary subspace
Linear space V V V and 0 {0} 0 Called a trivial subspace
Generate subspace
s p a n { α 1 , . . . , α s } span\{\alpha_{1},...,\alpha_{s}\} span{ α1,...,αs}
Intersection of subspaces & and
- V 1 ∩ V 2 V_{1} \cap V_{2} V1∩V2
- V 1 + V 2 V_{1} + V_{2} V1+V2
The intersection space and the sum space of the subspace constitute V V V The subspace of
d i m V 1 + d i m V 2 = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dimV_{1} + dimV_{2} = dim(V_{1} + V_{2}) + dim(V_{1} \cap V_{2}) dimV1+dimV2=dim(V1+V2)+dim(V1∩V2)
Linear mapping
set up V 1 , V 2 V_{1} , V_{2} V1,V2 It's a number field F F F On two linear spaces , mapping ϕ : V 1 → V 2 \phi : V_{1} \rightarrow V_{2} ϕ:V1→V2, about V 1 V_{1} V1 Any two vectors α 1 , α 2 \alpha_{1} , \alpha_{2} α1,α2 And any number λ ∈ F \lambda \in F λ∈F There are
ϕ ( α 1 + α 2 ) = ϕ ( α 1 ) + ϕ ( α 1 ) ϕ ( λ α 1 ) = λ ϕ ( α 1 ) \phi(\alpha_{1}+\alpha_{2})=\phi(\alpha_{1})+\phi(\alpha_{1})\\ \phi(\lambda \alpha_{1})=\lambda\phi(\alpha_{1}) ϕ(α1+α2)=ϕ(α1)+ϕ(α1)ϕ(λα1)=λϕ(α1)
Called mapping ϕ \phi ϕ By V 1 V_{1} V1 To V 2 V_{2} V2 The linear mapping of . call α \alpha α by ϕ ( α ) \phi(\alpha) ϕ(α) The original , ϕ ( α ) \phi(\alpha) ϕ(α) by α \alpha α like
nature
- ϕ ( 0 ) = 0 \phi(0)=0 ϕ(0)=0
- ϕ ( ∑ k i α i ) = ∑ k i ϕ ( α i ) \phi(\sum k_{i}\alpha_{i})=\sum k_{i}\phi(\alpha_{i}) ϕ(∑kiαi)=∑kiϕ(αi)
- set up α 1 , . . . , α s ∈ V \alpha_{1},...,\alpha_{s}\in V α1,...,αs∈V And linear correlation , be ϕ ( α 1 ) , . . . , ϕ ( α s ) \phi(\alpha_{1}),...,\phi(\alpha_{s}) ϕ(α1),...,ϕ(αs) Linear correlation
range
set up ϕ \phi ϕ by V 1 V_{1} V1 To V 2 V_{2} V2 The linear mapping of
Make ϕ ( V 1 ) = { β = ϕ ( α ) ∈ V 2 , ∀ α ∈ V 1 } \phi(V_{1})=\{ \beta = \phi(\alpha) \in V_{2} , \forall \alpha \in V_{1} \} ϕ(V1)={ β=ϕ(α)∈V2,∀α∈V1}
be ϕ ( V 1 ) \phi(V_{1}) ϕ(V1) by V 2 V_{2} V2 Linear subspace , Called linear mapping ϕ \phi ϕ Range of values , Write it down as R ( ϕ ) R(\phi) R(ϕ)
Nucleon space
Make N ( ϕ ) = ϕ − 1 ( 0 ) = { α ∈ V 1 ∣ ϕ ( α ) = 0 } N(\phi)=\phi^{-1}(0)=\{\alpha \in V_{1} | \phi(\alpha)=0\} N(ϕ)=ϕ−1(0)={ α∈V1∣ϕ(α)=0}
be N ( ϕ ) N(\phi) N(ϕ) by V 1 V_{1} V1 Linear subspace , Called linear mapping ϕ \phi ϕ The nucleon space of , d i m N ( ϕ ) dimN(\phi) dimN(ϕ) be called ϕ \phi ϕ Zero degree of
Rank and zero degree theorem
set up ϕ \phi ϕ yes n n n One dimensional linear space V 1 V_{1} V1 To m m m One dimensional linear space V 2 V_{2} V2 The linear mapping of , that
d i m R ( ϕ ) + d i m N ( ϕ ) = n dimR(\phi)+dimN(\phi)=n dimR(ϕ)+dimN(ϕ)=n
linear transformation
set up ϕ \phi ϕ by V V V To V V V A linear mapping of , call ϕ \phi ϕ It's a linear space V V V Linear transformation of
For example, differential transformation
be similar
set up ϕ \phi ϕ by V V V Linear transformation of , α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn And β 1 , . . . , β n \beta_{1},...,\beta_{n} β1,...,βn yes V V V Two groups of bases . from { α i } \{\alpha_{i}\} { αi} To { β i } \{\beta_{i}\} { βi} The transition matrix is P P P, ϕ \phi ϕ At base α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn The matrix under is A A A, At base β 1 , . . . , β n \beta_{1},...,\beta_{n} β1,...,βn The matrix under is B B B, be
B = P − 1 A P B=P^{-1}AP B=P−1AP
And A A A And B B B be similar , Write it down as B A B~A B A
The eigenvalue & Eigenvector
set up A A A by n n n Square matrix . If there is a number λ \lambda λ And n n n Nonzero column vector X X X, bring
A X = λ X or ( λ I − A ) X = 0 AX=\lambda X or (\lambda I-A)X=0 AX=λX or (λI−A)X=0
said λ \lambda λ For matrix A A A The eigenvalue , X X X For matrix A A A Of are characteristic values λ \lambda λ Eigenvector of
Related definitions
- set up A A A It's a number field F F F Of n n n Order matrix , matrix λ I − A \lambda I-A λI−A be called A A A Characteristic matrix
- determinant
∣ λ I − A ∣ = ∣ λ − a 11 − a 12 . . . − a 1 n − a 21 λ − a 22 . . . − a 2 n ⋮ ⋮ ⋱ ⋮ − a n 1 − a n 2 . . . λ − a m ∣ |\lambda I-A|= \begin{vmatrix} \lambda -a_{11} & -a_{12} & ... & -a_{1n}\\ -a_{21} & \lambda-a_{22} & ... & -a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ -a_{n1} & -a_{n2} & ... & \lambda-a_{m} \end{vmatrix} ∣λI−A∣=∣∣∣∣∣∣∣∣∣λ−a11−a21⋮−an1−a12λ−a22⋮−an2......⋱...−a1n−a2n⋮λ−am∣∣∣∣∣∣∣∣∣
be called A A A Characteristic polynomial - n n n Subalgebral equation ∣ λ I − A ∣ = 0 |\lambda I-A|=0 ∣λI−A∣=0 be called A A A Characteristic equation
The root is called A A A The characteristic root of the ( The eigenvalue ) - All eigenvalues of a matrix are called A A A Spectrum of , Write it down as σ ( A ) \sigma(A) σ(A)
- ( λ I − A ) X = 0 (\lambda I-A)X=0 (λI−A)X=0 Called characteristic equations
nature
- ∣ A ∣ = λ 1 . . . λ n |A|=\lambda_{1}...\lambda_{n} ∣A∣=λ1...λn
The necessary and sufficient condition for a matrix to be invertible is that all eigenvalues are not zero
- ∑ i = 1 n a i i = ∑ i = 1 n λ i \sum_{i=1}^{n} a_{ii}=\sum_{i=1}^{n} \lambda_{i} ∑i=1naii=∑i=1nλi
- if A A A The characteristic value is λ \lambda λ, X X X yes A A A Corresponding to λ \lambda λ Eigenvector of , be
- k A kA kA The characteristic value is k λ k\lambda kλ
- A m A^{m} Am The characteristic value is λ m \lambda^{m} λm
- if A A A reversible , be A − 1 A^{-1} A−1 The characteristic value is λ − 1 \lambda^{-1} λ−1
- f ( x ) f(x) f(x) by x x x polynomial , be f ( x ) f(x) f(x) The characteristic value is f ( λ ) f(\lambda) f(λ)
- X X X Still matrix k A , A m , A − 1 , f ( A ) kA,A^{m},A^{-1},f(A) kA,Am,A−1,f(A) Corresponding to k λ , λ m , λ − 1 , f ( λ ) k\lambda,\lambda^{m},\lambda^{-1},f(\lambda) kλ,λm,λ−1,f(λ) Eigenvector of
Feature subspace
n n n Order matrix A A A Corresponding eigenvalue of λ 0 \lambda_{0} λ0 Add zero vector to all eigenvectors of , It can make up R n R^{n} Rn The subspace of , It's called a matrix A A A Belong to characteristic value λ 0 \lambda_{0} λ0 The characteristic subspace of , Write it down as V λ 0 V_{\lambda_{0}} Vλ0, It's not hard to see. V λ 0 V_{\lambda_{0}} Vλ0 Is a set of characteristic equations
( λ 0 I − A ) X = 0 (\lambda_{0}I-A)X=0 (λ0I−A)X=0
The solution space of
Algebraic repetition
set up λ 1 , . . . , λ r \lambda_{1},...,\lambda_{r} λ1,...,λr by r r r Two different eigenvalues , The corresponding multiplicity is p 1 , . . . , p r p_{1},...,p_{r} p1,...,pr, call p i p_{i} pi by λ i \lambda_{i} λi Algebraic sufficient repetition
∣ λ I − A ∣ = ( λ − λ 1 ) p 1 . . . ( λ − λ r ) p r |\lambda I-A|=(\lambda-\lambda_{1})^{p_{1}}...(\lambda-\lambda_{r})^{p_{r}} ∣λI−A∣=(λ−λ1)p1...(λ−λr)pr
Geometric repeatability
Feature subspace V λ 0 V_{\lambda_{0}} Vλ0 Dimension of q i q_{i} qi by λ i \lambda_{i} λi Geometric repeatability of
q i = n − r a n k ( λ i I − A ) q_{i}=n-rank(\lambda_{i}I-A) qi=n−rank(λiI−A)
nature
- Eigenvectors belonging to different eigenvalues are linearly independent
- set up λ 1 , . . . , λ r \lambda_{1},...,\lambda_{r} λ1,...,λr by A A A Of r r r Two different eigenvalues . q i q_{i} qi yes λ i \lambda_{i} λi Geometric repeatability , α i 1 , . . . , α i q i \alpha_{i1},...,\alpha_{iq_{i}} αi1,...,αiqi Is corresponding to λ i \lambda_{i} λi Of q i q_{i} qi A linearly independent eigenvector , be A A A All eigenvectors α 11 , . . . , α 1 q 1 \alpha_{11},...,\alpha_{1q_{1}} α11,...,α1q1,…, α r 1 ; . . . ; α r q r \alpha_{r1};...;\alpha_{rq_{r}} αr1;...;αrqr Are linearly independent
- An eigenvector does not belong to different eigenvalues
- A A A Any eigenvalue λ i \lambda_{i} λi Geometric repeatability q i q_{i} qi Not greater than algebraic repetition p i p_{i} pi
Similarity matrix
nature
Similar matrices have the same
- Characteristic polynomial
- The eigenvalue
- Determinant value
- Rank
- trace
- Spectrum
Diagonalizable condition
Diagonalize
n n n Order matrix A A A Similar to diagonal matrix , said A A A Diagonalize , Also known as A A A Is a simple matrix
Conditions
- n n n Order matrix A A A The necessary and sufficient condition for diagonalization is n n n A linearly independent eigenvector
- n n n Order matrix A A A A necessary and sufficient condition for diagonalization is that the geometric repetition of each eigenvalue is equal to the algebraic repetition
- if n n n The order matrix has n n n Different eigenvalues ( Characteristic polynomials have no multiple roots ), be A A A Similar diagonalization
At the same time diagonalize
- set up A ∈ C n × n , B ∈ C m × m A \in C^{n\times n} , B \in C^{m\times m} A∈Cn×n,B∈Cm×m, And C = [ A 0 0 B ] C= \begin{bmatrix} A & 0\\ 0 & B \end{bmatrix} C=[A00B], be C C C The necessary and sufficient condition for diagonalization is A , B A,B A,B Can be diagonalized
- set up A , B ∈ C n × n A,B\in C^{n\times n} A,B∈Cn×n Can be diagonalized , be A , B A,B A,B At the same time, the necessary and sufficient condition for diagonalization is A B = B A AB=BA AB=BA
边栏推荐
- 机器学习工作岗位
- Ges graph computing engine hyg unveils the secrets of Graph Segmentation
- 如何让一个list根据另一个list的顺序排序
- Noah fortune passed the hearing: with an annual revenue of 4.3 billion yuan, Wang Jingbo has 49% voting rights, and Sequoia is a shareholder
- 函數的定義和函數的參數
- Requirements and precautions for applying for multi domain SSL certificate
- 涂鸦智能通过聆讯:拟回归香港上市 腾讯是重要股东
- Advanced network accounting notes (III)
- [QT] Chapter 3 and 4: window components and layout management
- 各种解背包问题
猜你喜欢

Principles of microcomputer Chapter VIII notes arrangement
![Develop small programs and official account from zero [phase I]](/img/02/77386ba3fe50b16018f77115b99db6.png)
Develop small programs and official account from zero [phase I]

A review of comparative learning

Sany Heavy energy technology innovation board listed: annual revenue of RMB 10.2 billion and market value of RMB 47 billion

博睿数据出席阿里云可观测技术峰会,数字体验管理驱动可持续发展

微机原理第八章笔记整理
![[QT] Chapter 10: Database](/img/54/54b815b5d117a12ab7c9ce9c29eb65.png)
[QT] Chapter 10: Database

8. AI doctor case

#20Set介绍与API

对比学习(Contrastive Learning)综述
随机推荐
各种解背包问题
Cloud security daily 220623: the red hat database management system has found an arbitrary code execution vulnerability and needs to be upgraded as soon as possible
[QT] Chapter 10: Database
【云动向】华为云云商店品牌全新发布 4大亮点都在这儿
Basic knowledge of assembly language (1)
Borui data attends Alibaba cloud observable technology summit, and digital experience management drives sustainable development
物联网平台搭建设备,附源代码
Basic knowledge of penetration test
函数的定义和函数的参数
高级计网笔记(四)
Jerry's seamless looping [chapter]
杰理之播 MP3 提示音功能【篇】
Obtain equipment information
qgis导入WMS OR WMTS
CV convolution neural network
产品反馈机制
Graffiti intelligence passed the hearing: Tencent is an important shareholder planning to return to Hong Kong for listing
CV-全连接神经网络
南芯半导体冲刺科创板:年营收9.8亿 顺为红杉小米OPPO是股东
今年,安徽母基金大爆发