当前位置:网站首页>[Tikhonov] image super-resolution reconstruction based on Tikhonov regularization
[Tikhonov] image super-resolution reconstruction based on Tikhonov regularization
2022-07-01 06:51:00 【FPGA and MATLAB】
1. Software version
matlab2013b
2. System principle
For the problem of image super-resolution reconstruction , It often involves solving large-scale equations , And the dimension of the equation is often very large . Therefore, the iterative algorithm is often used in the solution algorithm of regularization method . Here we will mainly explain the iteration Tikhonov The regularization method is taken as an example , This method utilizes some prior properties of regular parameters , At the same time, the smoothness condition is imposed on the exact solution , A posteriori selection strategy is used to improve the convergence rate and determine the regularization parameters .
First, the convergence analysis . Get the restoration result directly
![]()
But the solution of inverse matrix is very complicated , In this paper, iterative descent algorithm is used to solve the restored image , Iterative process meets
![]()
fitting (2) Take norm on both sides to get
![]()
According to the definition of matrix spectral norm , type (3) Can be written as
![]()
type (4) in ,
Represents the maximum eigenvalue of the matrix . According to the triangle inequality
![]()
Will type (5) Substituting (4) Formula
![]()
therefore ,α Meet the conditions α<1 Time algorithm convergence , To achieve the search for the global optimal solution .
in summary ,α The relation shall be satisfied 0<α<1 To ensure that the restoration result is the global optimal solution .
In this paper, the spatial domain iteration method is used to calculate , Then the iterative format of the regularization function of image restoration is :

3. Part of the source code
function [object,yy,err,Iter_Max]=func_Tikhonov(I1);
Images = I1;
Fact_cos_sin = func_cos_sin(Images);
H = func_fuzzy_gauss(I1,1);
% Parameter initialization
Iter_Max = 30;
[Rs,Cs,Ks] = size(Images);
fft_operator = fft2([0,-1,0;-1,4,-1;0,-1,0],Rs,Cs);
fft_images = fft2(Images,Rs,Cs);
fft_nimages = fft2(I1,Rs,Cs);
FFT_H = fft2(H,Rs,Cs);
FFT_H = FFT_H.*Fact_cos_sin;
CONJ_FFT_H = conj(FFT_H);
det_FFT_H = abs(FFT_H);
det_FFT_p = abs(fft_operator);
I2 = I1;
Y = I1;
mark = 0;
% iterative process
for k=1:Iter_Max
% Find regularization parameters AL
A = H;
B = imfilter(Y,[0,-1,0;-1,4,-1;0,-1,0],'replicate');
N = imfilter(I2,A,'replicate');
a1 = norm((double(Y)-double(N)),2).^2;
a2 = norm(double(Y),2).^2;
AL = log(a1/a2/1e2+1);
FFT_X1 = fft2(I2,Rs,Cs);
FFT_X1_t = CONJ_FFT_H.*FFT_X1;
FFT_object = FFT_X1_t+CONJ_FFT_H.*fft_images-FFT_X1_t.*(det_FFT_H.^2+AL*det_FFT_p.^2);
object = abs(ifft2(FFT_object));
object_max = max(max(object)); % calibration
object_min = min(min(object));
object =(object-object_min)*255/(object_max-object_min);
object = uint8(object);
I3 = object;
t = I2;
I2 = I3;
diff =(norm(double(I3)-double(t),2).^2)/((norm(double(t),2)).^2);
yy(k) = AL;
err(k) = diff;
end
4. Simulation conclusion
The simulation effect of this part is as follows :

A05-19
边栏推荐
- Database notes
- 三说 拷贝构造之禁用
- K8S搭建Redis集群
- 【微信小程序低代码开发】二,在实操中化解小程序的代码组成
- 给逆序对数求原数组
- SQL language learning record I
- 【Tikhonov】基于Tikhonov正则化的图像超分辨率重建
- Esp32 - ULP coprocessor reading Hall sensor in low power mode
- 问题解决:OfficeException: failed to start and connect(一)
- Solve the problem that the class defined in meta-inf.services cannot be read
猜你喜欢

产品学习(三)——需求列表
![[wechat applet] how to build a building block development?](/img/69/edb02c88b52b474a797307b96de369.jpg)
[wechat applet] how to build a building block development?

了解ESP32睡眠模式及其功耗

Product learning (I) - structure diagram

Dirty reading, unreal reading and unrepeatable reading

灰度何以跌下神坛?

Software engineering review

ESP32在电池供电时用ULP监测电池电压

Insufficient free space after clearing expired cache entries - consider increasing the maximum cache space

嵌入式系统
随机推荐
STM32F1与STM32CubeIDE编程实例-NEC协议红外接收与解码
Chapter V input / output (i/o) management
Jena default inference query based on OWL
转行做产品经理,如何挑选产品经理课程?
HW(OD)岗面试题
【分类模型】Q 型聚类分析
Chapitre V gestion des entrées / sorties
解决无法读取META-INF.services里面定义的类
Postgraduate entrance examination directory link
MySQL learning
2022 Jiangsu Vocational College skills competition (secondary vocational school) network construction and application open competition volume
Rclone access web interface
清除过期缓存条目后可用空间仍不足 - 请考虑增加缓存的最大空间
脏读、幻读和不可重复读
下载外文期刊的方法
ESP32在电池供电时用ULP监测电池电压
树莓派4的WiFi设置
mysql学习
了解ESP32睡眠模式及其功耗
node中引入模块的原理