dynamically create __slots__ objects with less code

Related tags

Miscellaneouspython
Overview

slots_factory

Factory functions and decorators for creating slot objects

Slots are a python construct that allows users to create an object that doesn't contain __dict__ or __weakref__ attributes. The benefit to a slots object is that it has faster attribute access and it saves on memory use, which make slots objects ideal for when you have lots of instances of a single python object.

I've never been a huge fan of the syntax though, as it requires repetitive code for definition as well as instantiation. yuck.

class SlotsObject:
    __slots__ = ('x', 'y', 'z')
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

    def __repr__(self):
        contents = ", ".join(
            [f"{key}={getattr(self, key)}" for key in self.__slots__]
        )
        return f"SlotsObject({contents})"

For funsies, I wanted to see if I could create a different way to instantiate these objects, with less jargon. Something like collections.namedtuple, but again without redundant definitions and with the benefits of __slots__. This repo is the results of such endeavor.

TL;DR - the @dataslots decorator ends up being the most useful implementation, free to skip to it if you want to see the fireworks.

slots_factory()

The first factory function made available is slots_factory. Simply import the function, and all **kwargs are assigned as attributes to an instance of a slots object. Type definitions are handled internally by the function, so successive calls to slots_factory with the same _name and **kwargs keys will return new instances of the same type.

For example:

In [1]: from slots_factory import slots_factory

In [2]: this = slots_factory(x=1, y=2, z=3)

In [3]: this
Out[3]: SlotsObject(x=1, y=2, z=3)

In [4]: that = slots_factory(x=4, y=5, z=6)

In [5]: that
Out[5]: SlotsObject(x=4, y=5, z=6)

In [6]: fizzbuzz = slots_factory(_name="fizzbuzz", fizz="fizz", buzz="buzz")

In [7]: fizzbuzz
Out[7]: fizzbuzz(fizz=fizz, buzz=buzz)

In [8]: slots_factory.__dict__
Out[8]:
{13844952821349480973: slots_factory.slots_factory.SlotsObject,
7572372383060875: slots_factory.slots_factory.fizzbuzz}

As we can see, we created three instances, this, that, and fizzbuzz. this and that are instances of the same type, since the function args were the same. fizzbuzz is a different type however, since its function arguments were different.

In [9]: type(this) == type(that)
Out[9]: True

In [10]: type(this) == type(fizzbuzz)
Out[10]: False

Another benefit to this SlotsObject is that, as the underlying type is a slots object, the attributes are dynamic, unlike the namedtuple.

In [11]: this.x = 4

In [12]: this
Out[12]: SlotsObject(x=4, y=2, z=3)

The type identification and attribute setting is all done in C, in attempt to make instantiation as fast as possible. Instantiation of a SlotObject is still about 80% slower than the instantiation of a namedtuple (mainly because it handles type definitions internally). Attribute access is on par however, and faster than a normal object as expected.

In [13]: from collections import namedtuple

In [14]: This = namedtuple('This', ['x', 'y', 'z'])

In [15]: %timeit this = This(x=1, y=2, z=3)
315 ns ± 1.58 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [16]: %timeit that = slots_factory('that', x=1,y=2,z=3)
597 ns ± 1.38 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [17]: %timeit this.c
24.6 ns ± 0.132 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [18]: %timeit that.c
25.8 ns ± 0.13 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
%time

fast_slots()

There's a second factory function, fast_slots, which is, obviously, faster. Instead of using the builtin hashing algorithm to generate an ID, it simply uses the object name and assumes that all objects named the same, are the same. Since it skips the hashing step, it builds slot instances much faster.

In [4]: from slots_factory import fast_slots

In [5]: %timeit that = fast_slots('that', x=1, y=2, z=3)
442 ns ± 3.71 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Instead of relying on an internal ID mechanism, fast_slots leverages python's try/except functionality. The internal _slots_factory_setattrs method throws an exception when the object attributes are thought to be different, so when this happens fast_slots deletes its old internalized type definition and then builds a new one. As such, if you expect to be redefining the same type over and over again, it's best to use slots_factory for better overall performance. If however you're certain to be creating identical instances of the same type (with differing attribute variables of course, that is indeed allowed by fast_slots), then you'll be better of using fast_slots to do this.

from slots_factory import slots_factory, fast_slots

# use `slots_factory` like so:
this = slots_factory(x=1)
that = slots_factory(y=2)

# use `fast_slots` like so:
category = fast_slots('category', id=1, name='category 1')
category = fast_slots('category', id=2, name='category 2')

type_factory()

Finally, if we're really craving the speeds, the most efficient way to use this module is to individually define your types and then manually spin up instances of these objects. This can be done by importing the type_factory and slots_from_type functions.

from slots_factory import type_factory, slots_from_type

type_ = type_factory(['x', 'y', 'z'], _name="SlotsObject")
instance = slots_from_type(type_, x=1, y=2, z=3,)
In [6]: %timeit instance = slots_from_type(type_, x=1, y=2, z=3)
323 ns ± 10.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

@dataslots

There's a new decorator provided in the slots_factory module which attempts to improve upon Python's dataclasses.dataclass. Class definitions can be decorated with the @dataslots decorator to generate instances of analogous types with __slots__. I say analogous because at runtime the decorator instantiates a new type instead of modifying the user's defined type. The user's type is simply used as a sort of blueprint for generating the desired type with __slots__.

In [1]: from slots_factory import dataslots

@dataslots
class This:
   x: int
   y: int
   z: int

In [2]: %timeit This(x=1, y=2, z=3)
397 ns ± 1.51 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

@dataslots
class This:
   x: int = 1
   y: int = 2
   z: int = 3

In [2]: %timeit This()
261 ns ± 1.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

The @dataslots decorator allows for users to set default values using standard python syntax, and defaults can be overwritten simply by defining a new value at instantiation. There is no ordering restrictions on default definitions. It's also worth noting that, normally, when writing __slots__ classes, we can't define class attributes which conflict with the __slots__ structure that Python creates. However due to the internal mechanics of @dataslots, we can set __slots__ object defaults absent any annotations.

@dataslots
class FizzBuzz:
    fizz = 'fizz'
    buzz: str
    fizzbuzz: str = 'spam'

In [5]: this = FizzBuzz(buzz='buzz', fizzbuzz='fizzbuzz')
Out[5]: FizzBuzz(fizz=fizz, buzz=buzz, fizzbuzz=fizzbuzz)

optional arguments for @dataslots

@dataslots provides a frozen keyword argument as a boolean. Passing frozen=True to the @dataslots decorator forces instances to be immutable.

@dataslots(frozen=True)
class FizzBuzz:
    fizz: str = 'fizz'
    buzz: str = 'buzz'

In [7]: fb = FizzBuzz()

In [8]: fb
Out[8]: FizzBuzz(fizz=fizz, buzz=buzz)

In [9]: fb.fizz = 'buzz'
-----------------------------------------------------------------------
AttributeError                        Traceback (most recent call last)
<ipython-input-9-63a20d67080e> in <module>
----> 1 fb.fizz = 'buzz'

~/programming/python/slots_factory/src/slots_factory/slots_factory.py in _frozen(self, *_, **__)
127             def _frozen(self, *_, **__):
128                 raise AttributeError("instance is immutable.")
--> 129             methods.update({
130                 "__setattr__": _frozen,
131                 "__delattr__": _frozen

AttributeError: instance is immutable.

@dataslots also provides an order keyword argument as either a boolean or an iterable. If passed as a boolean, items are iterated over in whatever manner Python decides to sort the attribute names. Order can be made explicit by passing an iterable of attribute names for yielding.

@dataslots(order=True)
class This:
    x: int
    y: int
    z: int

In [1]: this = This(x=1, y=2, z=3)

In [2]: [x for x in this]
Out[2]: [('x', 1), ('y', 2), ('z', 3)]     


@dataslots(order=['x', 'z', 'y'])
class This:
    x: int
    y: int
    z: int

In [3]: this = This(x=1, y=2, z=3)

In [4]: [x for x in this]
Out[4]: [('x', 1), ('z', 3), ('y', 2)] 

Ordering implies hierarchy, and hierarchy provides a means for rich comparisons. Instances that are ordered can be compared using Python's builtin comparison operators. Comparison is done by applying the respected operator's method as defined on the self of the pair of objects, in order, across attributes. Comparison is resolved at first instance of inequality.

@dataslots(order=True)
class This:
    x: int = 1
    y: int = 2
    z: int = 3

@dataslots(order=True)
class That:
    x: int = 4
    y: int = 5
    z: int = 6

In [1]: this, that = This(), That()

In [2]: this < that
Out[2]: True

In [3]: this = This(x=6)

In [4]: this < that
Out[4]: False

Though dataslots are not dictionaries, they have many of the properties you would expect from a dictionary object. As such, conversion to and from dictionaries is built in. And as dictionaries are ordered in Python 3.6+, we make sure to preserve order between conversions.

@dataslots(order=["x", "z", "y"])
class This:
    x: int
    y: int
    z: int

In [1]: this = This(x=1, y=2, z=3)

In [2]: that = dict(this)

In [3]: that
Out[3]: {'x': 1, 'z': 3, 'y': 2}

In [4]: dataslots.from_dict(that)
Out[4]: SlotsObject(x=1, z=3, y=2)

Dataslots also supports user-defined methods and properties. They can be defined as normal on the class, and @dataslots will be sure to carry these objects over to the __slots__ object.

@dataslots
class FizzBuzz:
    fizz = 'fizz'
    buzz: str = 'buzz'

    def fizzbuzz(self):
        return self.fizz + self.buzz

In [1]: fizzbuzz = FizzBuzz()

In [2]: fizzbuzz.fizzbuzz()
Out[2]: "fizzbuzz"

@dataslots
class FizzBuzz:
    fizz = 'fizz'
    buzz: str = 'buzz'

    @property
    def fizzbuzz(self):
        return self.fizz + self.buzz

    @fizzbuzz.setter
    def fizzbuzz(self, item):
        self.fizz, self.buzz = item

In [1]: fizzbuzz = FizzBuzz()

In [2]: fizzbuzz.fizzbuzz
Out[2]: 'fizzbuzz'

In [3]: fizzbuzz.fizzbuzz = ("This", "That")

In [4]: fizzbuzz.fizzbuzz
Out[4]: 'ThisThat'

Mutable default types in @dataslots via lambda

Given the nature of mutable types in Python, it's always been considered gauche to define default values as mutable types within object definitions. In order to allow for mutable defaults whose references aren't shared across instances, @dataslots default values can be assigned as either type type or a lambda expression with no arguments. These defaults are then called on instantiation, and instances assigned the result of the callable.

@dataslots
class RecordsCollection:
    list_of_records = lambda: [{"record_id": 0, "name": "Terminal Record"}]
    record_count: int = 1

    def add_record(self, _id, name):
        self.record_count += 1
        self.list_of_records.append({
                "record_id": _id,
                "name": name
            }
        )

@dataslots
class RecordIds:
    ids = set

    def ingest_record(self, record):
        for item in record.list_of_records:
            self.ids.add(item["record_id"])


In [1]: n1 = RecordsCollection()

In [2]: %timeit RecordsCollection()
Out[2]: 496 ns ± 1.95 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

In [3]: n2 = RecordsCollection()

In [4]: n1.add_record(5, "New Record")

In [5]: n1.list_of_records
Out[5]: [{'record_id': 0, 'name': 'Terminal Record'}, {'record_id': 5, 'name': 'New Record'}]

In [6]: n2.list_of_records
Out[6]: [{'record_id': 0, 'name': 'Terminal Record'}]

In [7]: rec_ids = RecordIds()

In [8]: rec_ids.ingest_record(n1)

In [9]: rec_ids.ids
Out[9]: {0, 5}

Inheritance and Composition in @dataslots

@dataslots objects can inherit artifacts from other dataslots. However, given that @dataslots is regenerating new datatypes on the fly, it currently doesn't have any concept of method resolution order, nor does it understand the concept of super(). A derived class simply updates its default values with preference given to the first base class in queue. Given this, class composition is generally regarded as a better implementation strategy, given @dataslots's compatibility with default type instantiations.

"""inheritance"""
@dataslots
class A:
    a: list = lambda: [1,2,3]

@dataslots
class B:
    a = list

@dataslots
class DerivedOne(A, B):
    def get_list(self):
        return self.a

@dataslots
class DerivedTwo(B, A):
    def get_list(self):
        return self.a

In [1]: instance_one = DerivedOne()

In [2]: instance_two = DerivedTwo()

In [3]: instance_one.get_list()
Out[3]: [1,2,3]

In [4]: instance_two.get_list()
Out[4]: []
"""composition"""
@dataslots
class SubcomponentOne:
    x = 1

@dataslots
class SubcomponentTwo:
    x = lambda: [1, 2, 3]

@dataslots
class RootClass:
    s1 = SubcomponentOne
    s2 = SubcomponentTwo

In [1]: instance = RootClass()

In [2]: repr(instance)
Out[2]: 'RootClass(s1=SubcomponentOne(x=1), s2=SubcomponentTwo(x=[1, 2, 3]))'

In [3]: instance.s2.x
Out[3]: [1, 2, 3]

Dependent defaults in @dataslots

Attributes oftentimes depend on the state of other attributes within an object. This can be tricky when it comes to default values in slots, as if you set values at type definition, those attributes become read-only. One solution to this is to define the attribute as a @property, so that the property has access to the instance when referenced.

@dataslots provides a leaner alternative, once again using the lambda function as a means for default assignments. lambda functions assigned to attributes can take a single argument, self. At instantiation the lambda is called and the resultant is assigned to the instance attribute.

import pymongo
import redis

from slots_factory import dataslots

@dataslots
class Redis:
    queue = redis.Redis(host="redis-queue")


@dataslots
class Mongo:
    client = pymongo.MongoClient("mongodb://mongo:27017")
    database = lambda self: self.client.get_database("primary")


@dataslots
class Connections:
    mongo = Mongo
    redis = Redis

In [1]: conn = Connections()

In [2]: conn.mongo.database
Out[2]: Database(MongoClient(host=['mongo:27017'], document_class=dict, tz_aware=False, connect=True), 'primary')

Appendix: Some pure-Python implementations

This module uses custom C extensions for trying to speed up attribute write times. However the inclusion of this requires slots_factory to be installed and the extensions compiled. If that seems undesirable, here are some pure-Python implementations that can simply be copied into a codebase.

def slots_factory(_name="SlotsObject", **kwargs):
    stores = slots_factory.__dict__
    _keys = frozenset(kwargs)
    if _name == "SlotsObject":
        _id = hash(_keys)
        _type = stores.get(_id)
    else:
        _id = hash(_name) ^ hash(_keys)
        _type = stores.get(_id)
    if not _type:
        def __repr__(self):
            contents = ", ".join(
                [f"{key}={getattr(self, key)}" for key in self.__slots__]
            )
            return f"{self.__class__.__name__}({contents})"
        _type = type(
            _name,
            (),
            {"__slots__": _keys, "__repr__": __repr__}
        )
        stores[_id] = _type
    instance = _type()
    for key, value in kwargs.items():
        setattr(instance, key, value)
    return instance


def fast_slots(_name="SlotsObject", **kwargs):
    _type = fast_slots.__dict__.get(_name)
    if not _type:
        def __repr__(self):
            contents = ", ".join(
                [f"{key}={getattr(self, key)}" for key in self.__slots__]
            )
            return f"{self.__class__.__name__}({contents})"
        _type = type(
            _name,
            (),
            {"__slots__": kwargs.keys(), "__repr__": __repr__}
        )
        fast_slots.__dict__[_name] = _type
    instance = _type()
    try:
        for key, value in kwargs.items():
            setattr(instance, key, value)
        return instance
    except AttributeError:
        del fast_slots.__dict__[_name]
        return fast_slots(_name, **kwargs)
Owner
Michael Green
Software Developer at Crunch Cloud Analytics
Michael Green
A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

Introduction The PPCI (Pure Python Compiler Infrastructure) project is a compiler written entirely in the Python programming language. It contains fro

Windel Bouwman 277 Dec 26, 2022
A StarkNet project template based on a Pythonic environment

StarkNet Project Template This is an opinionated StarkNet project template. It is based around the Python's ecosystem and best practices. tox to manag

Francesco Ceccon 5 Apr 21, 2022
PyWorkflow(PyWF) - A Python Binding of C++ Workflow

PyWorkflow(PyWF) - A Python Binding of C++ Workflow 概览 C++ Workflow是一个高性能的异步引擎,本项目着力于实现一个Python版的Workflow,让Python用户也能享受Workflow带来的绝佳体验。

Sogou-inc 108 Dec 01, 2022
Rofi script to minimize / unminimize multiple windows in qtile

Qminimize Rofi script to minimize / unminimize multiple windows in qtile Additional requirements : EWMH module fuzzywuzzy module How to use it : - Clo

9 Sep 18, 2022
Ramadhan countdown - Simple daily reminder about upcoming Ramadhan

Ramadhan Countdown Bot Simple bot for displaying daily reminder about Islamic pr

Abdurrahman Shofy Adianto 1 Feb 06, 2022
A very basic ciphering/deciphering tool

ckrett-python-library This is an useful python library for people who care about privacy, this library is useful to cipher and decipher text using 4 s

SasiVatsal 8 Oct 18, 2022
AIO solution for SSIS students

ssis.bit AIO solution for SSIS students Hardware CircuitPython supports more than 200 different boards. Locally available is the TTGO T8 ESP32-S2 ST77

3 Jun 05, 2022
A middle-to-high level algorithm book designed with coding interview at heart!

Hands-on Algorithmic Problem Solving A one-stop coding interview prep book! About this book In short, this is a middle-to-high level algorithm book de

Li Yin 1.8k Jan 02, 2023
I³ Tracker for Essential Open Innovation Datasets

I³ Tracker for Essential Open Innovation Datasets This repository is set up to track, version, and contribute updates to the I³ Essential Open Innovat

1 Feb 08, 2022
Qt-creator-boost-debugging-helper - Qt Creator Debugging Helper for Boost Library

Go to Tools Options Debugger Locals & Expressions. Paste the script path t

Dmitry Bravikov 2 Apr 22, 2022
An extended version of the hotkeys demo code using action classes

An extended version of the hotkeys application using action classes. In adafruit's Hotkeys code, a macro is using a series of integers, assumed to be

Neradoc 5 May 01, 2022
Mechanized literally means automation.

Mechanized literally means automation. And this branch which you are now observing is automated by the python script. This python project actually automates my workflow related to Git & Github.

Shreejan Dolai 4 Nov 11, 2022
Learn the basics of Python. These tutorials are for Python beginners. so even if you have no prior knowledge of Python, you won’t face any difficulty understanding these tutorials.

01_Python_Introduction Introduction 👋 Python is a modern, robust, high level programming language. It is very easy to pick up even if you are complet

Milaan Parmar / Милан пармар / _米兰 帕尔马 245 Dec 30, 2022
Flexible constructor to create dynamic list of heterogeneous properties for some kind of entity

Flexible constructor to create dynamic list of heterogeneous properties for some kind of entity. This set of helpers useful to create properties like contacts or attributes for describe car/computer/

Django Stars 24 Jul 21, 2022
Serverless demo showing users how they can capture (and obfuscate) their Lambda payloads in Datadog APM

Serverless-capture-lambda-payload-demo Serverless demo showing users how they can capture (and obfuscate) their Lambda payloads in Datadog APM This wi

Datadog, Inc. 1 Nov 02, 2021
A complete python calculator with 2 modes Float and Int numbers.

Python Calculator This program is made for learning purpose. Getting started This Program runs using python, install it via terminal or from thier ofi

Felix Sanchez 1 Jan 18, 2022
Your copilot to studies and work (Pomodoro-timer, Translate and Notes app)

Copylot Your copilot to studies and work (Pomodoro-timer, Translate and Notes app) Copylot are three applications in one: Pomodoro Translate Notes Cop

Eduardo Mendes 20 Dec 16, 2022
EDF R&D implementation of ISO 15118-20 FDIS.

EDF R&D implementation of ISO 15118-20 FDIS ============ This project implements the ISO 15118-20 using Python. Supported features: DC Bidirectional P

30 Dec 29, 2022
Rufus port to linux, writed on Python3

Rufus-for-Linux Rufus port to linux, writed on Python3 Программа будет иметь тот же интерфейс что и оригинал, и тот же функционал. Программа создается

10 May 12, 2022
Labspy06 With Python

Labspy06 Profil Nama : Nafal mumtaz fuadi Nim : 312110457 Kelas : T1.21.A.2 Latihan 1 Ubahlah kode dibawah ini menjadi fungsi menggunakan lambda impor

Mas Nafal 1 Dec 12, 2021