An educational tool to introduce AI planning concepts using mobile manipulator robots.

Overview

JEDAI Explains Decision-Making AI

Virtual Machine Image

The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is available here: https://bit.ly/2WccU4K

To setup the system manually, you can use the steps given below:

Tutorial

A short video tutorial on how to use JEDAI is available here: https://bit.ly/3BmQugi

Running JEDAI

Use this command to start JEDAI from the JEDAI source directory (~/JEDAI/ in VM Image).

./start_jedai.sh

Alternatively execute this command:

python3 manage.py runserver

The output of this command includes a link to the development server hosting the frontend.

You can stop the execution anytime using this command from the JEDAI source directory (~/JEDAI/ in VM Image):

./stop_jedai.sh

Installing JEDAI on a new system

Requirements

  • Ubuntu 18.04
  • Python 2 and 3
  • Validate: https://github.com/KCL-Planning/VAL
    1. Retrieve and enter the repo:

      git clone https://github.com/KCL-Planning/VAL

      cd VAL

    2. Build the binary:

      ./scripts/linux/build_linux64.sh all Release

      • This will put Validate in <PARENT_DIR>/VAL/build/linux64/Release/bin

NOTE: JEDAI is tested extensively with Chromium (including Edge, Vivaldi, and Google Chrome). Support on other browsers is not guaranteed.

Setup

  1. Retrieve the TMP_Merged submodule by running the following in the project root (unless you already have TMP_Merged somewhere else on your system and want to use that, in which case you can try a symlink):

    git clone https://github.com/AAIR-lab/Anytime-Task-and-Motion-Policies.git TMP_Merged

    1. You must then install the dependencies for the submodule (this will probably take a while):

      bash TMP_Merged/install_tmp_dependencies.sh

    2. Also make sure to check out the correct branch of the submodule:

      cd TMP_Merged

      git checkout origin/TMP_JEDAI

  2. Install the web framework:

    pip3 install django

  3. Install the YAML library:

    pip3 install PyYAML

  4. Install the PDDL library:

    pip3 install pddlpy

    • If you get an error while running the code about a missing module named __builtin__ in the antlr4 library, then running this should help:

      pip3 install antlr4-python3-runtime==4.7

  5. Install the imaging library:

    pip3 install Pillow

  6. Check that PYTHON_2_PATH and VAL_PATH in config.py are pointing to the corresponding binaries on your system.

You are required to submit a domain and problem file, as well as a .dae environment file. See the test_domains directory for examples.

TMP submodule

After installing its dependencies, the TMP submodule should work out of the box, with environments popping up and giving a demonstration of successful plans. If you get any strange import errors from TMP despite packages seeming to be installed correctly, double-check your all your environment variables (especially if using an IDE like PyCharm).

Contributors

Trevor Angle
Naman Shah
Kiran Prasad
Pulkit Verma
Amruta Tapadiya
Kyle Atkinson
Chirav Dave
Judith Rosenke
Rushang Karia
Siddharth Srivastava

Owner
Autonomous Agents and Intelligent Robots
ASU research group focusing on well-founded and reliable assistive AI systems
Autonomous Agents and Intelligent Robots
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023