Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Overview

Bridging Multi-Task Learning and Meta-Learning

Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation" by Haoxiang Wang, Han Zhao, and Bo Li from UIUC. [arXiv:2106.09017]

This repo contains our efficient implementation of multi-task learning (MTL) for few-shot learning benchmarks. Our empirical studies show that our efficient MTL implementation can match the state-of-the-art gradient-based meta-learning algorithms, while enjoying an order of magnitude less training time.

If you find this repo useful for your research, please consider citing our paper

@inproceedings{wang2021bridging,
  title={Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation},
  author={Wang, Haoxiang and Zhao, Han and Li, Bo},
  booktitle={International Conference on Machine Learning},
  year={2021},
  organization={PMLR}
}

Installation

This repo was tested with Ubuntu 18.04, Python 3.7 & 3.8 (Anaconda version), Pytorch 1.8 with CUDA 10 & 11.

Required Packages

  • Common Packages (covered by Anaconda): numpy, scikit-learn, tqdm, etc.
  • Pytorch packages: pytorch, torchvision, pytorch-lightning (a PyTorch wrapper), pytorch-optimizer (a collection of optimizers for Pytorch)
  • Other packages: learn2learn (a meta-learning codebase), WandB (a smart logger to visualize and track machine learning experiments)

Installation Tutorial:

  1. Install the Conda package manager with Anaconda following this webpage.

  2. In the Conda environment, install PyTorch and TorchVision following the official tutorial.

  3. In the Conda environment, install all other packages using the command line

    pip install pytorch-lightning==1.0.2 torch_optimizer wandb 
    
    • Currently, learn2learn is not compatible with the latest version of pytorch-lightning.
  4. Install the latest version of learn2learn by downloading its GitHub repo to a local folder

    git clone https://github.com/learnables/learn2learn.git && cd learn2learn && pip install -e .
    

Code

This repo is mainly built upon the learn2learn package (especially its pytorch-lightning version).

  • train.py: The script to train multi-task learning (and other meta-learning algorithms) on few-shot image classification benchmarks. This code is built upon this example provided by learn2learn.
  • lightning_episodic_module.py: This contains a base class LightningEpisodicModule for meta-learning. Notice that this class is built upon this implementation in learn2learn, and we add more choices of test methods, optimizers, and learning rate schedulers to this class.
  • lightning_mtl.py: This contains a class LightningMTL, which is our implementation of multi-task learning (MTL). Notice that this is a child class of LightningEpisodicModule, and it only includes the training code. Please refer to lightning_episodic_module.py for the optimizer setup and the test/validation evaluation code (e.g., fine-tuning the last layer by L2-regularized logistic regression)
  • models/: This folder is adopted from the repo RFS by Yue Wang, and it contains the implementation of multiple variants of ResNet. For a fair comparison with previous few-shot learning works, we conducted all experiments with the ResNet-12 architecture. However, one can try other architectures (e.g., ResNet-50 or WideResNet-28) to obtain possibly better performance.
  • datasets/: This is adapted from this learn2learn folder, which contains data loaders for few-shot image classification datasets. We only made a slight modification to two data loaders (mini-ImageNet and tiered-ImageNet), so we only present them here. Other data-loaders can be directly loaded from the learn2learn package.
  • benchmarks/: This is adapted from this learn2learn folder, which provides wrappers for data loaders (e.g., few-shot task construction, data augmentation). We implemented the data augmentation introduced in MetaOptNet (named as Lee19 in our code), and added some functions to accommodate the training of multi-task learning.

Logging and Checkpointing

  • Logging: We use the WandB logger, which can automatically upload all training and evaluation logs to the cloud. You need to register a free WandB account first and log in to it on your workstation/server following this tutorial. You can also turn off the sync function to make the logger purely offline. Notice that the logger we used is wrapped by Pytorch-Lightning (see this doc), and you can easily switch it to other loggers supported by Pytorch-Lighting (e.g., TensorBoard, MLflow, Comet, Neptune), since the logging functions we use in this repo is universal to all Pytorch-Lightning loggers. See this tutorial for details.
  • Checkpointing: We adopt the checkpointing functions provided by Pytorch-Lightning, which can automatically save checkpoints at the end of every epoch. Our implementation only saves the best epoch checkpoint (i.e., the epoch with the highest validation accuracy) and the last epoch checkpoint, so the disk usage of checkpoints is constant. Pytorch-Lightning can also help you load checkpoints easily.

Args and Flags

Below, we introduce multiple arguments and flags you might want to modify.

Notice that the argparser does not only parse the arguments in train.py. In addition, it also parses arguments in 'lightning_episodic_module.py' and lightning_mtl.py. Furthermore, some arguments are embedded in pytorch-lightning (e.g., --max_epochs).

  • --dataset: Currently, we support four datasets, ['mini-imagenet', 'tiered-imagenet', 'cifarfs', 'fc100']
  • --algorithm: We only provide the implementation of multi-task learning in this repo. However, you can also try other meta-learning algorithms provided by this learn2learn folder.
    • Note: in the empirical comparison of our paper, we take the officially reported performance in the original papers of these meta-learning methods (e.g., MAML, MetaOptNet), instead of running this script with the learn2learn implementation.
  • --root: The root directory that saves datasets. The default is ~/data.
  • --log_dir: The directory that saves logs and checkpoints. The defult is ~/wandb_logs
  • --gpu: The index of the GPU you want to use. Currently, our code only supports single-GPU training.
  • --norm_train_features: Normalize features (i.e., last hidden layer outputs) during training. We find this is useful for all datasets except for FC100.
  • --test_method: The default is l2, which is the L2-regularized logistic regression we use for the fine-tuning adaptation during the test phase.
  • --optim: The optimizer to use (default is 'radam', i.e., RAdam). The choice list is ['sgd', 'sgdp', 'sgdw', 'adam', 'adamw', 'adamax', 'radam', 'adabound', 'adamp']. These optimizers are adopted from PyTorch and pytorch-optimizer.
  • --scheduler: The learning rate scheduler to use (default is 'plateau', i.e., ReduceLROnPlateau). The other choice is 'step', which is the StepLR scheduler.
  • --meta_batch_size: The number of training tasks in a batch during (meta-)training.
  • --train_queries:
  • --test_shots: The number of shots during the test.
    • We only consider 5-way classification in our experiments. If you want to vary it, you can change the flags --train_ways and --test_ways.
    • Our implementation of multi-task learning does not care about the number of shots during training, since it does not split a task into query and support data. Thus --train_shots is noneffective for multi-task learning. But it is useful to other meta-learning algorithms.
  • --test_queries: The number of query samples per class in each test task (default is 30).
    • In our experiments, we adopt test_queries = 50. But this has a large GPU memory consumption, e.g., it will exceed 11GB (the limit of 1080ti and 2080ti) when running on mini-ImageNet. Thus, we set it as 30 here instead. In principle, larger test_queries leads to a more accurate estimation of the test accuracy. However, if you cannot use a large value of test_queries, you can also enlarge the following final_test_epoch_length to obtain a more accurate test accuracy estimation.
  • --final_test_epoch_length: The number of tasks for test evaluation at the end of training. Default is 2000.
  • --no_log: Running the script with this flag will turn off the logging and checkpointing. Notice that in this mode, pytorch-lightning will automatically write some checkpoint files to ./checkpoints/.
  • --max_epochs: the number of maximum training epochs.

Running

To replicate empirical results of multi-task learning shown in the paper, please run the following commands with your preferred root directory to save datasets and the GPU to use. The code can automatically download datasets to the root directory you specified.

In the following demo, we consider the root directory as /data and the GPU index as 0.

mini-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --meta_batch_size 2 --test_shots 5 --algorithm mtl --dataset mini-imagenet
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features  --test_shots 1 --algorithm mtl --dataset mini-imagenet
    

tiered-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 1 --test_shots 5 --algorithm mtl --dataset tiered-imagenet
    
    • For multi-task learning, there is no query-support split during training (i.e., one can think that we "merge" query and support data for multi-task learning). Then, given the default train_queries = 5, setting --train_queries 35 makes the number of samples per class in each training task to be 40.
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset tiered-imagenet
    

CIFAR-FS

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --test_shots 5 --algorithm mtl --dataset cifarfs
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 15 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset cifarfs
    

FC100

  • 5-shot

    python train.py --gpu 0 --root ~/data --test_shots 5 --algorithm mtl --dataset fc100
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --train_queries 4 --train_shots 1 --meta_batch_size 1 --test_shots 1 --algorithm mtl --dataset fc100
    
    • Setting --train_queries 4 --train_shots 1 reduces the number of samples per class in each training task to be 4+1=5 for multi-task learning, since it does not have the query-support splitting.

Results

Here is an empirical comparison of our implementation of multi-task learning against MetaOptNet, a state-of-the-art gradient-based meta-learning algorithm. For more results, please refer to our paper.

Benchmarking

Efficiency comparison

We benchmarked the training cost of Multi-Task Learning and MetaOptNet on AWS-EC2 P3 instances. See our papers for more details.

  • mini-ImageNet (5-way 5-shot)
Test Accuracy GPU Hours
MetaOptNet 78.63% 85.6 hrs
Multi-Task Learning 77.72% 3.7 hrs
  • tiered-ImageNet (5-way 5-shot)

    efficiency-tiered-imagenet
    • We vary the meta_batch_size and the number of epochs and finally obtain this plot. Each dot of MTL represents the result of one configuration. With smaller meta_batch_size and the number of epochs, MTL can be 11x faster than MetaOptNet while achieving the same performance (81.55% vs. 81.56%).

Contact Information

Please contact Haoxiang Wang ([email protected]) for any questions regarding this repo.

If you have questions regarding the learn2learn codebase, please consider joining the learn2learn slack to ask the authors and contributors of learn2learn directly.

Acknowledgments

In this repo, we adopt some code from the following codebases, and we sincerely thank their authors:

  • learn2learn: This repo is built on the learn2learn codebase (more precisely, the pytorch-lightning version of learn2learn), and the implemented multi-task learning code will be pushed to learn2learn in the future. Stay tuned!
  • RFS: We adopt the implementation of neural net architectures (e.g., CNNs, ResNets) from the RFS codebase (i.e., we copied their models/ to the './models' in this repo).
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021