Making the DAEN information accessible.

Overview

AccessibleAdverseEventNotification

Making the DAEN information accessible.

The purpose of this repository is to make the information on Australian COVID-19 adverse events accessible. The Therapeutics Goods Administration (TGA) keeps a database of adverse reactions to medications including the COVID-19 vaccines. This Database of Adverse Event Notifications (DAEN) is available to the public via this awful web interface. The most recent two weeks is never available.

The DAEN website doesn't provide information in a format that might be useful for analysis. Instead you have to scrape the information by entering each individual day and collecting the results from two tables which might span multiple pages. I've already done that and the code is here (this code isn't great, but it is good enough to get the job done).

Please be aware that the numbers reported in DAEN are probably significantly less than the actual number of adverse events and deaths. As the DAEN website states:

Adverse event reports from consumers and health professionals to the TGA are voluntary, so there is under-reporting by these groups of adverse events related to therapeutic goods in Australia. This is the same around the world.

The scraped data is found in the data directory. These files are tab separated files which you can easily import in to a spreadsheet program. All of the files are only for COVID-19 vaccines.

  • DAEN_webscrape_simple.txt This file shows the date (twice for reasons that made sense at the time, but don't necessarily make sense anymore), the number of cases reported that day, the number of cases with a single suspected medicine for that day, and the number of deaths reported that day.
  • DAEN_webscrape_medsummary.txt This file gives a daily count of each adverse event category. Please note that if one patient had multiple adverse events, then each event would be counted in the appropriate category.
  • DAEN_webscrape_listofreports.txt This file provides the individual reports and includes sex and age (when recorded).

Figure 1 shows some of the basic information such as number of adverse events and deaths reported each day for the COVID-19 vaccines, myocarditis, pericarditis and the more general term cardiac disorder.

Figure 1 Figure 1.

Figure 2 shows a histogram of reported cases of myocarditis and pericarditis from the COVID-19 vaccine. Please note that the age group 10-19 is somewhat distorted as the age 10-11 should not receive the vaccine (although there are cases of 8 year olds getting the vaccine when that should not have occurred). This age group also has a significantly lower uptake than other age groups.

Figure 2 Figure 2.

Figures 3 and 4 plot the reports of myocarditis by age grouped by sex or manufacturer respectively. Figures 5 and 6 are the same for pericarditis. A '-' is used where an age was not given in the report.

Figure 3 Figure 3.

Figure 4 Figure 4.

Figure 5 Figure 5.

Figure 6 Figure 6.

Figure 7 shows how the histogram for myocarditis has progressed over time.

Figure 7
Figure 7.

Figure 8 shows the death rate of people in Australia who contracted COVID-19. Data taken from health.gov on 1/12/2021. Bottom graph is zoomed in to 1% to see what is happening with those under the age of 60.

Figure 8
Figure 8.

Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.

Stock Statistics/Indicators Calculation Helper VERSION: 0.3.2 Introduction Supply a wrapper StockDataFrame based on the pandas.DataFrame with inline s

Cedric Zhuang 1.1k Dec 28, 2022
A 2-dimensional physics engine written in Cairo

A 2-dimensional physics engine written in Cairo

Topology 38 Nov 16, 2022
t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology.

tree-SNE t-SNE and hierarchical clustering are popular methods of exploratory data analysis, particularly in biology. Building on recent advances in s

Isaac Robinson 61 Nov 21, 2022
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
Bigdata Simulation Library Of Dream By Sandman Books

BIGDATA SIMULATION LIBRARY OF DREAM BY SANDMAN BOOKS ================= Solution Architecture Description In the realm of Dreaming, its ruler SANDMAN,

Maycon Cypriano 3 Jun 30, 2022
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological images.

cleanX CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological

Candace Makeda Moore, MD 20 Jan 05, 2023