2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Overview

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021 AIAC QQ浏览器AI算法大赛 赛道二 超参数优化 初赛Rank3 决赛Rank6

赛题官网:https://algo.browser.qq.com/

赛题内容:在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真实业务场景问题出发,并基于脱敏后的数据集来评测各个参赛队伍的超参数优化算法。本赛题为超参数优化问题或黑盒优化问题:给定超参数的取值空间,每一轮可以获取一组超参数对应的Reward,要求超参数优化算法在限定的迭代轮次内找到Reward尽可能大的一组超参数,最终按照找到的最大Reward来计算排名。

算法baseline主要来自华为HEBO,针对比赛做了一些参数和代码的修改。另外官方提供的代码修改了一些结构方便线下debug。

运行环境: win10 ,Python3.6,Pycharm20200101,git bash用于运行打包脚本。

官方代码主要修改点:

1、thpo/run_search.py函数,增加修改如下代码:

#run_cmd = common.PYTHONX + " ./thpo/run_search_one_time.py " + common.args_to_str(cur_args)
args = common.parse_args(common.experiment_parser("description"))
searcher_root = args[common.CmdArgs.searcher_root]
searcher = get_implement_searcher(searcher_root)
eva_func_list = args[common.CmdArgs.data]
repeat_num = args[common.CmdArgs.repear_num]
err_code, err_msg = run_search_one_time(args, searcher, eva_func_list[0], repeat_num)

2、初赛阶段,修改n_iteration为10次,总共50组参数,因为hebo线下很容易就到0.99+,将迭代的次数减小,方便继续优化,线下线上能保证同时上分。

hebo代码修改点:

1、修改代码结构,适配本次比赛,具体可以查看searcher.py.

2、searcher.py,name='gpy',MACE方法改为MOMeanSigmaLCB,EvolutionOpt修改iters参数为25.决赛优化check_unique的去重代码。在获得一批最优点后,增加通过距离选择其中一些点的方法,优于hebo原代码中的随机选择方式。具体在distance相关代码。

3、bo/models/gp/gpy_wgp.py,Matern32改为Matern52,去掉linear核,optimize_restarts修改为原来的三分之一,restarts改为一次,也就是优化一次。

总结

上面是本次比赛初赛和决赛的一些修改点,其它的漏掉的记起来了再补充。因为之前没做过超参数的优化,所以除了读大量论文和代码花了很多时间,调参也是花了很多时间。所以try.txt里面记录了大量调参的过程和结果,留作记录。另外初赛阶段把NeurIPS 2020开源的代码都试了下,特别是turbo这个试了很久,感觉应该有效果,但是实际使用效果不佳。初赛阶段之所以做上面这些修改,主要原因是一开始hebo代码调通以后,线下0.99线上0.001,后面发现是超时问题,所以相关的调参工作基本上是优化代码的运行时间,确保精度不下降的情况下提高速度,最终逐步从0.7+优化到0.95+,不过初赛最终切榜的时候显示超时,线上分数掉到0.899+,rank3.

复赛阶段基本上代码没做太大修改,因为试了很多策略效果都不怎么理想。最终还是没用early stop策略。线上0.712+

reference里面有使用的相关开源代码的链接,里面也能找到相应的论文,细节部分可以看下论文里面。

reference:

1、https://github.com/huawei-noah/HEBO/tree/master/HEBO

2、https://bbochallenge.com/leaderboard/

3、https://github.com/uber-research/TuRBO

Owner
Aigege
记录下数据挖掘、计算机视觉工作中编写的一些代码和总结,备份和分享下。 主要包括工作中的一些实现,自己刷比赛时编写的一些解决方案,包括分析和建模,另外还有些阅读最新论文实现的视觉CNN,结构化数据NN网络等,使用的tensorflow、keras框架,陆续加入阅最新sota论文实现的新算法
Aigege
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022