[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

Overview

MuVER

This repo contains the code and pre-trained model for our EMNLP 2021 paper:
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations. Xinyin Ma, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Weiming Lu

Quick Start

1. Requirements

The requirements for our code are listed in requirements.txt, install the package with the following command:

pip install -r requirements.txt

For huggingface/transformers, we tested it under version 4.1.X and 4.2.X.

2. Download data and model

3. Use the released model to reproduce our results

  • Without View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score

Expected Result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6208 0.7783 0.8592 0.8983 0.9342 0.9533 0.9633 0.9700
lego 0.4904 0.6714 0.7690 0.8357 0.8791 0.9091 0.9208 0.9249
star_trek 0.4743 0.6130 0.6967 0.7606 0.8159 0.8581 0.8805 0.8919
yugioh 0.3432 0.4861 0.6040 0.7004 0.7596 0.8201 0.8512 0.8672
total 0.4496 0.5970 0.6936 0.7658 0.8187 0.8628 0.8854 0.8969
  • With View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128 
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score
    --view_expansion  
    --merge_layers 4  
    --top_k 0.4

Expected result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6175 0.7867 0.8733 0.9150 0.9375 0.9600 0.9675 0.9708
lego 0.5046 0.6889 0.7882 0.8449 0.8882 0.9183 0.9324 0.9374
star_trek 0.4810 0.6253 0.7121 0.7783 0.8271 0.8706 0.8935 0.9030
yugioh 0.3444 0.5027 0.6322 0.7300 0.7902 0.8429 0.8690 0.8826
total 0.4541 0.6109 0.7136 0.7864 0.8352 0.8777 0.8988 0.9084

Optional Argument:

  • --data_parallel: whether you want to use multiple gpus.
  • --accumulate_score: accumulate score for each entity. Obtain a higher score but will take much time to inference.
  • --view_expansion: whether you want to merge and expand view.
  • --top_k: top_k pairs are expected to merge in each layer.
  • --merge_layers: the number of layers for merging.
  • --test_mode: If you want to generate candidates for train/dev set, change the test_mode to train or dev, which will generate candidates outputs and save it under the directory where you save the test model.

4. How to train your MuVER

We provice the code to train your MuVER. Train the code with the following command:

export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --epoch 30 
    --train_batch_size 128 
    --learning_rate 1e-5 
    --do_train --do_eval 
    --data_parallel 
    --name distributed_multi_view

Important: Since constrastive learning relies heavily on a large batch size, as reported in our paper, we use eight v100(16g) to train our model. The hyperparameters for our best model are in logs/zeshel_hyper_param.txt

The code will create a directory runtime_log to save the log, model and the hyperparameter you used. Everytime you trained your model(with or without grid search), it will create a directory under runtime_log/name_in_your_args/start_time, e.g., runtime_log/distributed_multi_view/2021-09-07-15-12-21, to store all the checkpoints, curve for visualization and the training log.

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. NausÄ—das 6 Aug 30, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
JugLab 33 Dec 30, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022