The repository offers the official implementation of our paper in PyTorch.

Related tags

Deep LearningCIT
Overview

Cloth Interactive Transformer (CIT)

Cloth Interactive Transformer for Virtual Try-On
Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Philip H.S. Torr5, Nicu Sebe16.
1University of Trento, Italy, 2Peng Cheng Laboratory, China, 3Peking University Shenzhen Graduate School, China,
4Inception Institute of AI, UAE, 5University of Oxford, UK, 6Huawei Research Ireland, Ireland.

The repository offers the official implementation of our paper in PyTorch. The code and pre-trained models are tested with pytorch 0.4.1, torchvision 0.2.1, opencv-python 4.1, and pillow 5.4 (Python 3.6).

In the meantime, check out our recent paper XingGAN and XingVTON.

Usage

This pipeline is a combination of consecutive training and testing of Cloth Interactive Transformer (CIT) Matching block based GMM and CIT Reasoning block based TOM. GMM generates the warped clothes according to the target human. Then, TOM blends the warped clothes outputs from GMM into the target human properties, to generate the final try-on output.

  1. Install the requirements
  2. Download/Prepare the dataset
  3. Train the CIT Matching block based GMM network
  4. Get warped clothes for training set with trained GMM network, and copy warped clothes & masks inside data/train directory
  5. Train the CIT Reasoning block based TOM network
  6. Test CIT Matching block based GMM for testing set
  7. Get warped clothes for testing set, copy warped clothes & masks inside data/test directory
  8. Test CIT Reasoning block based TOM testing set

Installation

This implementation is built and tested in PyTorch 0.4.1. Pytorch and torchvision are recommended to install with conda: conda install pytorch=0.4.1 torchvision=0.2.1 -c pytorch

For all packages, run pip install -r requirements.txt

Data Preparation

For training/testing VITON dataset, our full and processed dataset is available here: https://1drv.ms/u/s!Ai8t8GAHdzVUiQQYX0azYhqIDPP6?e=4cpFTI. After downloading, unzip to your own data directory ./data/.

Training

Run python train.py with your specific usage options for GMM and TOM stage.

For example, GMM: python train.py --name GMM --stage GMM --workers 4 --save_count 5000 --shuffle. Then run test.py for GMM network with the training dataset, which will generate the warped clothes and masks in "warp-cloth" and "warp-mask" folders inside the "result/GMM/train/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/train" folder.

Run TOM stage, python train.py --name TOM --stage TOM --workers 4 --save_count 5000 --shuffle

Evaluation

We adopt four evaluation metrics in our work for evaluating the performance of the proposed XingVTON. There are Jaccard score (JS), structral similarity index measure (SSIM), learned perceptual image patch similarity (LPIPS), and Inception score (IS).

Note that JS is used for the same clothing retry-on cases (with ground truth cases) in the first geometric matching stage, while SSIM and LPIPS are used for the same clothing retry-on cases (with ground truth cases) in the second try-on stage. In addition, IS is used for different clothing try-on (where no ground truth is available).

For JS

  • Step1: Runpython test.py --name GMM --stage GMM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/GMM_pretrained/gmm_final.pth then the parsed segmentation area for current upper clothing is used as the reference image, accompanied with generated warped clothing mask then:
  • Step2: Runpython metrics/getJS.py

For SSIM

After we run test.py for GMM network with the testibng dataset, the warped clothes and masks will be generated in "warp-cloth" and "warp-mask" folders inside the "result/GMM/test/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/test" folder. Then:

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth Then the original target human image is used as the reference image, accompanied with the generated retry-on image then:
  • Step2: Run python metrics/getSSIM.py

For LPIPS

  • Step1: You need to creat a new virtual enviriment, then install PyTorch 1.0+ and torchvision;
  • Step2: Run sh metrics/PerceptualSimilarity/testLPIPS.sh;

For IS

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth
  • Step2: Run python metrics/getIS.py

Inference

The pre-trained models are provided here. Download the pre-trained models and put them in this project (./checkpoints) Then just run the same step as Evaluation to test/inference our model.

Acknowledgements

This source code is inspired by CP-VTON, CP-VTON+. We are extremely grateful for their public implementation.

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

CIT

@article{ren2021cloth,
  title={Cloth Interactive Transformer for Virtual Try-On},
  author={Ren, Bin and Tang, Hao and Meng, Fanyang and Ding, Runwei and Shao, Ling and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2104.05519},
  year={2021}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Owner
Bingoren
Bingoren
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022