Topic Inference with Zeroshot models

Overview

zeroshot_topics

Table of Contents

Installation

zeroshot_topics is distributed on PyPI as a universal wheel and is available on Linux/macOS and Windows and supports Python 3.7+ and PyPy.

$ pip install zeroshot_topics

Usage

from zeroshot_topics import ZeroShotTopicFinder
zsmodel = ZeroShotTopicFinder()
text = """can you tell me anything else okay great tell me everything you know about George_Washington.
he was the first president he was well he I'm trying to well he fought in the Civil_War he was a general
in the Civil_War and chopped down his father's cherry tree when he was a little boy he that's it."""
zsmodel.find_topic(text)

License

zeroshot_topics is distributed under the terms of

You might also like...
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

LightSeq: A High-Performance Inference Library for Sequence Processing and Generation
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transformer, etc. It is therefore best useful for Machine Translation, Text Generation, Dialog, Language Modelling, and other related tasks using these models.

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Comments
  • Error when I run the sample code

    Error when I run the sample code

    I get this when I try to run the sample code:

    Traceback (most recent call last): File "zerotopics.py", line 1, in from zeroshot_topics import ZeroShotTopicFinder File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/init.py", line 3, in from .zeroshot_tm import ZeroShotTopicFinder File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/zeroshot_tm.py", line 3, in from .utils import load_zeroshot_model File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/utils.py", line 6, in def load_zeroshot_model(model_name="valhalla/distilbart-mnli-12-6"): File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/functools.py", line 490, in lru_cache raise TypeError('Expected maxsize to be an integer or None') TypeError: Expected maxsize to be an integer or None

    Specifics: Python version 3.7.9

    pip freeze gives (yeh this virtualenv is getting big :):

    absl-py==1.0.0 aiohttp==3.8.1 aiosignal==1.2.0 alabaster==0.7.12 aniso8601==9.0.1 antlr4-python3-runtime==4.8 appnope @ file:///opt/concourse/worker/volumes/live/4f734db2-9ca8-4d8b-5b29-6ca15b4b4772/volume/appnope_1606859466979/work async-timeout==4.0.2 asynctest==0.13.0 attrs==20.3.0 Babel==2.9.1 backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work bertopic==0.6.0 blis @ file:///opt/concourse/worker/volumes/live/cd6a6bea-d063-4b62-4c10-fcc89b17d0ac/volume/cython-blis_1594246851083/work boto3==1.17.86 botocore==1.20.86 brotlipy==0.7.0 cachetools==4.2.1 catalogue==2.0.6 certifi==2020.12.5 cffi @ file:///opt/concourse/worker/volumes/live/2aa8abfe-8b8d-4889-78d9-837b74c3cd64/volume/cffi_1606255119410/work chardet @ file:///opt/concourse/worker/volumes/live/9efbf151-b45b-463d-6340-a5c399bf00b7/volume/chardet_1607706825988/work charset-normalizer==2.0.9 click==7.1.2 colorama==0.4.4 coloredlogs==15.0.1 commonmark==0.9.1 cryptography @ file:///opt/concourse/worker/volumes/live/41c3d62a-f1f8-46ce-414a-9adaf4ea7d96/volume/cryptography_1607636752064/work cycler==0.10.0 cymem @ file:///opt/concourse/worker/volumes/live/3e8d7428-f57d-4000-44e7-34ac8a744f13/volume/cymem_1605062299053/work Cython==0.29.23 dataclasses==0.6 datasets==1.17.0 decorator @ file:///home/ktietz/src/ci/decorator_1611930055503/work dill==0.3.4 docformatter==1.4 docutils==0.15.2 emoji==1.6.1 en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.2.0/en_core_web_lg-3.2.0-py3-none-any.whl en-core-web-md @ https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.2.0/en_core_web_md-3.2.0-py3-none-any.whl en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.2.0/en_core_web_sm-3.2.0-py3-none-any.whl en-core-web-trf @ https://github.com/explosion/spacy-models/releases/download/en_core_web_trf-3.2.0/en_core_web_trf-3.2.0-py3-none-any.whl et-xmlfile==1.1.0 fairscale==0.4.4 Faker==8.16.0 fasttext @ file:///Users/scharlesworth/fastText-0.9.2 filelock==3.0.12 flake8==4.0.1 flake8-bugbear==21.11.29 Flask==2.0.2 Flask-Cors==3.0.10 Flask-RESTful==0.3.9 frozenlist==1.2.0 fsspec==2021.11.1 future==0.18.2 gitdb==4.0.9 gitdb2==4.0.2 GitPython==3.1.24 google-api-core==1.26.2 google-api-python-client==2.0.2 google-auth==1.28.0 google-auth-httplib2==0.1.0 google-auth-oauthlib==0.4.6 googleapis-common-protos==1.53.0 grpcio==1.43.0 hdbscan==0.8.27 httplib2==0.19.0 huggingface-hub==0.2.1 humanfriendly==10.0 hydra-core==1.1.1 idna @ file:///tmp/build/80754af9/idna_1593446292537/work imagesize==1.3.0 importlib-metadata @ file:///tmp/build/80754af9/importlib-metadata_1602276842396/work importlib-resources==5.4.0 iniconfig==1.1.1 iopath==0.1.9 ipykernel @ file:///opt/concourse/worker/volumes/live/73e8766c-12c3-4f76-62a6-3dea9a7da5b7/volume/ipykernel_1596206701501/work/dist/ipykernel-5.3.4-py3-none-any.whl ipython @ file:///opt/concourse/worker/volumes/live/ac685347-76d6-4904-4b88-886c6a434f22/volume/ipython_1614616430264/work ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work itsdangerous==2.0.1 jedi @ file:///opt/concourse/worker/volumes/live/5006b7b5-a924-4788-6cfe-ae05d8be8830/volume/jedi_1606932947370/work Jinja2==3.0.1 jmespath==0.10.0 joblib==1.0.1 jsonlines==3.0.0 jsonschema==3.0.2 jupyter-client @ file:///tmp/build/80754af9/jupyter_client_1601311786391/work jupyter-core @ file:///opt/concourse/worker/volumes/live/a699b83f-e941-4170-5136-bf87e3f37756/volume/jupyter_core_1612213304212/work keybert==0.5.0 kiwisolver==1.3.1 langcodes==3.3.0 llvmlite==0.36.0 loguru==0.5.3 Markdown==3.3.4 markdown-it-py==0.5.8 MarkupSafe==2.0.1 matplotlib==3.4.0 mccabe==0.6.1 mkl-fft==1.2.0 mkl-random==1.1.1 mkl-service==2.3.0 mock==4.0.3 multidict==5.2.0 multiprocess==0.70.12.2 murmurhash @ file:///opt/concourse/worker/volumes/live/9a0582f9-9097-4dab-6d7a-fcf62b4968ae/volume/murmurhash_1607456116622/work myst-parser==0.12.10 nltk==3.6.5 numba==0.53.1 numpy==1.20.2 oauthlib==3.1.1 omegaconf==2.1.1 openai==0.6.3 openpyxl==3.0.9 packaging==20.9 pandas==1.2.1 parlai==1.5.1 parquet==1.3.1 parso==0.7.0 pathy==0.6.1 pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work Pillow==8.2.0 plac @ file:///opt/concourse/worker/volumes/live/a94b6881-2d18-4055-5a3c-f24036f05ef6/volume/plac_1594259982880/work pluggy==1.0.0 ply==3.11 portalocker==2.3.2 praw==7.1.0 prawcore==1.5.0 preshed @ file:///opt/concourse/worker/volumes/live/952fa955-acc7-4aa0-6766-86f802ea8ef1/volume/preshed_1608233410312/work prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1616415428029/work protobuf==3.15.6 ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl py==1.11.0 py-gfm==1.0.2 py-rouge==1.1 py4j==0.10.7 pyarrow==6.0.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pybind11==2.6.1 pycodestyle==2.8.0 pycparser @ file:///tmp/build/80754af9/pycparser_1594388511720/work pydantic==1.8.2 pyee==8.2.2 pyflakes==2.4.0 Pygments @ file:///tmp/build/80754af9/pygments_1615143339740/work PyJWT==2.3.0 pynndescent==0.5.2 pyodbc==4.0.32 pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1608057966937/work pyparsing==2.4.7 pyrsistent @ file:///opt/concourse/worker/volumes/live/656e0c1b-ef87-4251-4a51-1290b2351993/volume/pyrsistent_1600141745371/work PySocks @ file:///opt/concourse/worker/volumes/live/ef943889-94fc-4539-798d-461c60b77804/volume/pysocks_1605305801690/work pytest==6.2.5 pytest-datadir==1.3.1 pytest-regressions==2.2.0 python-dateutil @ file:///home/ktietz/src/ci/python-dateutil_1611928101742/work python-slugify==5.0.2 pytorch-transformers==1.2.0 pytz==2020.5 PyYAML==6.0 pyzmq==20.0.0 regex==2021.11.10 requests @ file:///tmp/build/80754af9/requests_1608241421344/work requests-mock==1.9.3 requests-oauthlib==1.3.0 requests-toolbelt==0.9.1 rich==10.16.2 rsa==4.7.2 s3transfer==0.4.2 sacremoses==0.0.44 scikit-learn==0.24.1 scipy==1.6.2 seaborn==0.11.1 sentence-transformers==1.0.4 sentencepiece==0.1.91 seqeval==0.0.5 sh==1.14.2 six @ file:///opt/concourse/worker/volumes/live/f983ba11-c9fe-4dff-7ce7-d89b95b09771/volume/six_1605205318156/work sklearn==0.0 slack-bolt==1.11.1 slack-sdk==3.13.0 slackclient==2.9.3 slackeventsapi==3.0.1 smart-open==5.2.1 smmap==5.0.0 snowballstemmer==2.2.0 spacy==3.2.0 spacy-alignments==0.8.4 spacy-legacy==3.0.8 spacy-loggers==1.0.1 spacy-sentence-bert==0.1.2 spacy-transformers==1.1.2 spark-nlp==3.0.2 Sphinx==2.2.2 sphinx-autodoc-typehints==1.10.3 sphinx-rtd-theme==1.0.0 sphinxcontrib-applehelp==1.0.2 sphinxcontrib-devhelp==1.0.2 sphinxcontrib-htmlhelp==2.0.0 sphinxcontrib-jsmath==1.0.1 sphinxcontrib-qthelp==1.0.3 sphinxcontrib-serializinghtml==1.1.5 srsly==2.4.2 subword-nmt==0.3.8 tensorboard==2.7.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorboardX==2.4.1 text-unidecode==1.3 thinc==8.0.13 threadpoolctl==2.1.0 thriftpy2==0.4.14 tokenizers==0.10.2 toml==0.10.2 torch==1.10.1 torchtext==0.11.1 tornado @ file:///opt/concourse/worker/volumes/live/d531d395-893c-4ca1-6a5f-717b318eb08c/volume/tornado_1606942307627/work tqdm==4.62.3 traitlets @ file:///home/ktietz/src/ci/traitlets_1611929699868/work transformers==4.11.0 typer==0.4.0 typing-extensions==3.7.4.3 umap-learn==0.5.1 Unidecode==1.3.2 untokenize==0.1.1 update-checker==0.18.0 uritemplate==3.0.1 urllib3==1.26.7 wasabi==0.8.2 wcwidth @ file:///tmp/build/80754af9/wcwidth_1593447189090/work webexteamsbot==0.1.4.2 webexteamssdk==1.6 websocket-client==0.57.0 websocket-server==0.6.4 Werkzeug==2.0.1 xlrd==2.0.1 xxhash==2.0.2 yarl==1.7.2 zeroshot-topics==0.1.0 zipp @ file:///tmp/build/80754af9/zipp_1604001098328/work

    opened by sdcharle 1
  • Add size to lru_cache

    Add size to lru_cache

    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/__init__.py in <module>()
          1 __version__ = '0.1.0'
          2 
    ----> 3 from .zeroshot_tm import ZeroShotTopicFinder
    
    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/zeroshot_tm.py in <module>()
          1 import attr
          2 from keybert import KeyBERT
    ----> 3 from .utils import load_zeroshot_model
          4 from nltk.corpus import wordnet as wn
          5 
    
    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/utils.py in <module>()
          4 
          5 @lru_cache
    ----> 6 def load_zeroshot_model(model_name="valhalla/distilbart-mnli-12-6"):
          7     classifier = pipeline("zero-shot-classification", model=model_name)
          8     return classifier
    
    /usr/lib/python3.7/functools.py in lru_cache(maxsize, typed)
        488             maxsize = 0
        489     elif maxsize is not None:
    --> 490         raise TypeError('Expected maxsize to be an integer or None')
        491 
        492     def decorating_function(user_function):
    
    TypeError: Expected maxsize to be an integer or None
    

    I assume that you have to provide, maxsize parameter to lru_cache. Worked for me, when I provided the parameter.

    opened by gsasikiran 6
Releases(v.0.0.1)
Owner
Rita Anjana
ML engineer
Rita Anjana
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022