To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Overview

Cement-Strength-Prediction

Problem Statement

To build a regression model to predict the concrete compressive strength based on the different features in the training data. Architecture

Data Description

Given is the variable name, variable type, the measurement unit and a brief description. The concrete compressive strength is the regression problem. The order of this listing corresponds to the order of numerals along the rows of the database.

Architecture

architecture

Name Data Type Measurement Description

Cement (component 1) quantitative kg in a m3 mixture Input Variable

Blast Furnace Slag (component 2) quantitative kg in a m3 mixture Input Variable-- Blast furnace slag is a nonmetallic coproduct produced in the process. It consists primarily of silicates, aluminosilicates, and calcium-alumina-silicates

Fly Ash (component 3) quantitative kg in a m3 mixture Input Variable- it is a coal combustion product that is composed of the particulates (fine particles of burned fuel) that are driven out of coal-fired boilers together with the flue gases.

Water (component 4) quantitative kg in a m3 mixture Input Variable

Superplasticizer (component 5) quantitative kg in a m3 mixture Input Variable--Superplasticizers (SP's), also known as high range water reducers, are additives used in making high strength concrete. Their addition to concrete or mortar allows the reduction of the water to cement ratio without negatively affecting the workability of the mixture, and enables the production of self-consolidating concrete and high performance concrete

Coarse Aggregate (component 6) quantitative kg in a m3 mixture Input Variable-- construction aggregate, or simply "aggregate", is a broad category of coarse to medium grained particulate material used in construction, including sand, gravel, crushed stone, slag, recycled concrete and geosynthetic aggregates

Fine Aggregate (component 7) quantitative kg in a m3 mixture Input Variable—Similar to coarse aggregate, the constitution is much finer. Age quantitative Day (1~365) Input Variable

Concrete compressive strength quantitative MPa Output Variable

Apart from training files, we also require a "schema" file from the client, which contains all the relevant information about the training files such as: Name of the files, Length of Date value in FileName, Length of Time value in FileName, Number of Columns, Name of the Columns, and their datatype.

Data Validation

In this step, we perform different sets of validation on the given set of training files.

  1. Name Validation- We validate the name of the files based on the given name in the schema file. We have created a regex pattern as per the name given in the schema file to use for validation. After validating the pattern in the name, we check for the length of date in the file name as well as the length of time in the file name. If all the values are as per requirement, we move such files to "Good_Data_Folder" else we move such files to "Bad_Data_Folder."

  2. Number of Columns - We validate the number of columns present in the files, and if it doesn't match with the value given in the schema file, then the file is moved to "Bad_Data_Folder."

  3. Name of Columns - The name of the columns is validated and should be the same as given in the schema file. If not, then the file is moved to "Bad_Data_Folder".

  4. The datatype of columns - The datatype of columns is given in the schema file. This is validated when we insert the files into Database. If the datatype is wrong, then the file is moved to "Bad_Data_Folder".

  5. Null values in columns - If any of the columns in a file have all the values as NULL or missing, we discard such a file and move it to "Bad_Data_Folder".

Data Insertion in Database

  1. Database Creation and connection - Create a database with the given name passed. If the database is already created, open the connection to the database.
  2. Table creation in the database - Table with name - "Good_Data", is created in the database for inserting the files in the "Good_Data_Folder" based on given column names and datatype in the schema file. If the table is already present, then the new table is not created and new files are inserted in the already present table as we want training to be done on new as well as old training files.
  3. Insertion of files in the table - All the files in the "Good_Data_Folder" are inserted in the above-created table. If any file has invalid data type in any of the columns, the file is not loaded in the table and is moved to "Bad_Data_Folder".

Model Training

  1. Data Export from Db - The data in a stored database is exported as a CSV file to be used for model training.
  2. Data Preprocessing
    a) Check for null values in the columns. If present, impute the null values using the KNN imputer b) transform the features using log transformation c) Scale the training and test data separately
  3. Clustering - KMeans algorithm is used to create clusters in the preprocessed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using "KneeLocator" function. The idea behind clustering is to implement different algorithms To train data in different clusters. The Kmeans model is trained over preprocessed data and the model is saved for further use in prediction.
  4. Model Selection - After clusters are created, we find the best model for each cluster. We are using two algorithms, "Random forest Regressor" and “Linear Regression”. For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the Rsquared scores for both models and select the model with the best score. Similarly, the model is selected for each cluster. All the models for every cluster are saved for use in prediction.

Prediction Data Description

Client will send the data in multiple set of files in batches at a given location. Data will contain climate indicators in 8 columns. Apart from prediction files, we also require a "schema" file from client which contains all the relevant information about the training files such as: Name of the files, Length of Date value in FileName, Length of Time value in FileName, Number of Columns, Name of the Columns and their datatype. Data Validation
In this step, we perform different sets of validation on the given set of training files.

  1. Name Validation- We validate the name of the files on the basis of given Name in the schema file. We have created a regex pattern as per the name given in schema file, to use for validation. After validating the pattern in the name, we check for length of date in the file name as well as length of time in the file name. If all the values are as per requirement, we move such files to "Good_Data_Folder" else we move such files to "Bad_Data_Folder".
  2. Number of Columns - We validate the number of columns present in the files, if it doesn't match with the value given in the schema file then the file is moved to "Bad_Data_Folder".
  3. Name of Columns - The name of the columns is validated and should be same as given in the schema file. If not, then the file is moved to "Bad_Data_Folder".
  4. Datatype of columns - The datatype of columns is given in the schema file. This is validated when we insert the files into Database. If dataype is wrong then the file is moved to "Bad_Data_Folder".
  5. Null values in columns - If any of the columns in a file has all the values as NULL or missing, we discard such file and move it to "Bad_Data_Folder".

Data Insertion in Database

  1. Database Creation and connection - Create database with the given name passed. If the database is already created, open the connection to the database.
  2. Table creation in the database - Table with name - "Good_Data", is created in the database for inserting the files in the "Good_Data_Folder" on the basis of given column names and datatype in the schema file. If table is already present then new table is not created, and new files are inserted the already present table as we want training to be done on new as well old training files.
  3. Insertion of files in the table - All the files in the "Good_Data_Folder" are inserted in the above-created table. If any file has invalid data type in any of the columns, the file is not loaded in the table and is moved to "Bad_Data_Folder".

Prediction

  1. Data Export from Db - The data in the stored database is exported as a CSV file to be used for prediction.
  2. Data Preprocessing
    a) Check for null values in the columns. If present, impute the null values using the KNN imputer b) transform the features using log transformation c) Scale the training and test data separately
  3. Clustering - KMeans model created during training is loaded, and clusters for the preprocessed prediction data is predicted.
  4. Prediction - Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster.
  5. Once the prediction is made for all the clusters, the predictions along with the original names before label encoder are saved in a CSV file at a given location and the location is returned to the client.
Owner
Ashish Kumar
Research Fellow | Data Analyst | Data Scientist
Ashish Kumar
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021