A collection of research papers and software related to explainability in graph machine learning.

Overview
Comments
  • Add new citation: Numeroso et al.

    Add new citation: Numeroso et al.

    Hi all, I've added a new reference to a paper of mine related to counterfactual explanations for molecule predictions. I hope this is appreciated :)

    Link to paper: https://arxiv.org/abs/2104.08060

    opened by danilonumeroso 1
  • added GCExplainer

    added GCExplainer

    You might want to double check this commit is ok - I added a new sub-heading called concept based methods which was not covered by the survey paper the rest of the approaches are categorised into.

    opened by sbonner0 1
  • Added new references

    Added new references

    Two papers on rule-based reasoning:

    • AnyBURL (Meilicke et. al)
    • SAFRAN (Ott et. al)

    And one application note on a web application for visualizing predictions and their explanations using made my the approaches above:

    • LinkExplorer (Ott et. al)
    opened by nomisto 0
  • Include one more paper from NeurIPS 2020

    Include one more paper from NeurIPS 2020

    The work 'Evaluating Attribution for Graph Neural Networks' is particularly useful because of its approach as a benchmarking. It comprises several attribution techniques and GNN architectures.

    opened by joaquincabezas 0
  • Overwhelming amount of papers

    Overwhelming amount of papers

    Hi, I have been impressed about how fast is this field growing. As I continue reading and learning, I will contribute with papers to make this list even better.

    In particular, @flyingdoog is maintaining a list with the papers (grouped by year) at https://github.com/flyingdoog/awesome-graph-explainability-papers that can be interesting to review

    opened by joaquincabezas 1
Owner
AstraZeneca
Data Science & AI: Unlocking new science insights
AstraZeneca
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
Implementation of linear CorEx and temporal CorEx.

Correlation Explanation Methods Official implementation of linear correlation explanation (linear CorEx) and temporal correlation explanation (T-CorEx

Hrayr Harutyunyan 34 Nov 15, 2022
Contrastive Explanation (Foil Trees), developed at TNO/Utrecht University

Contrastive Explanation (Foil Trees) Contrastive and counterfactual explanations for machine learning (ML) Marcel Robeer (2018-2020), TNO/Utrecht Univ

M.J. Robeer 41 Aug 29, 2022
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
Logging MXNet data for visualization in TensorBoard.

Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T

Amazon Web Services - Labs 327 Dec 05, 2022
👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

👋🦊 Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
Interactive convnet features visualization for Keras

Quiver Interactive convnet features visualization for Keras The quiver workflow Video Demo Build your model in keras model = Model(...) Launch the vis

Keplr 1.7k Dec 21, 2022
Python Library for Model Interpretation/Explanations

Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system

Oracle 1k Dec 27, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Jan 01, 2023
Visual Computing Group (Ulm University) 99 Nov 30, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
FairML - is a python toolbox auditing the machine learning models for bias.

======== FairML: Auditing Black-Box Predictive Models FairML is a python toolbox auditing the machine learning models for bias. Description Predictive

Julius Adebayo 338 Nov 09, 2022
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022
Visual analysis and diagnostic tools to facilitate machine learning model selection.

Yellowbrick Visual analysis and diagnostic tools to facilitate machine learning model selection. What is Yellowbrick? Yellowbrick is a suite of visual

District Data Labs 3.9k Dec 30, 2022
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures

Souvik Pratiher 16 Nov 17, 2021
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
A library for debugging/inspecting machine learning classifiers and explaining their predictions

ELI5 ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions. It provides support for the following m

2.6k Dec 30, 2022