Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

Overview

Conditional DETR

This repository is an official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

Introduction

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings and that the spatial embeddings make minor contributions, increasing the need for high-quality content embeddings and thus increasing the training difficulty.

Our conditional DETR learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention. The benefit is that through the conditional spatial query, each cross-attention head is able to attend to a band containing a distinct region, e.g., one object extremity or a region inside the object box (Figure 1). This narrows down the spatial range for localizing the distinct regions for object classification and box regression, thus relaxing the dependence on the content embeddings and easing the training. Empirical results show that conditional DETR converges 6.7x faster for the backbones R50 and R101 and 10x faster for stronger backbones DC5-R50 and DC5-R101.

Model Zoo

We provide conditional DETR and conditional DETR-DC5 models. AP is computed on COCO 2017 val.

Method Epochs Params (M) FLOPs (G) AP APS APM APL URL
DETR-R50 500 41 86 42.0 20.5 45.8 61.1 model
log
DETR-R50 50 41 86 34.8 13.9 37.3 54.4 model
log
DETR-DC5-R50 500 41 187 43.3 22.5 47.3 61.1 model
log
DETR-R101 500 60 152 43.5 21.0 48.0 61.8 model
log
DETR-R101 50 60 152 36.9 15.5 40.6 55.6 model
log
DETR-DC5-R101 500 60 253 44.9 23.7 49.5 62.3 model
log
Conditional DETR-R50 50 44 90 41.0 20.6 44.3 59.3 model
log
Conditional DETR-DC5-R50 50 44 195 43.7 23.9 47.6 60.1 model
log
Conditional DETR-R101 50 63 156 42.8 21.7 46.6 60.9 model
log
Conditional DETR-DC5-R101 50 63 262 45.0 26.1 48.9 62.8 model
log

Note:

  1. The numbers in the table are slightly differently from the numbers in the paper. We re-ran some experiments when releasing the codes.
  2. "DC5" means removing the stride in C5 stage of ResNet and add a dilation of 2 instead.

Installation

Requirements

  • Python >= 3.7, CUDA >= 10.1
  • PyTorch >= 1.7.0, torchvision >= 0.6.1
  • Cython, COCOAPI, scipy, termcolor

The code is developed using Python 3.8 with PyTorch 1.7.0. First, clone the repository locally:

git clone https://github.com/Atten4Vis/ConditionalDETR.git

Then, install PyTorch and torchvision:

conda install pytorch=1.7.0 torchvision=0.6.1 cudatoolkit=10.1 -c pytorch

Install other requirements:

cd ConditionalDETR
pip install -r requirements.txt

Usage

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
├── annotations/  # annotation json files
└── images/
    ├── train2017/    # train images
    ├── val2017/      # val images
    └── test2017/     # test images

Training

To train conditional DETR-R50 on a single node with 8 gpus for 50 epochs run:

bash scripts/conddetr_r50_epoch50.sh

or

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env \
    main.py \
    --resume auto \
    --coco_path /path/to/coco \
    --output_dir output/conddetr_r50_epoch50

The training process takes around 30 hours on a single machine with 8 V100 cards.

Same as DETR training setting, we train conditional DETR with AdamW setting learning rate in the transformer to 1e-4 and 1e-5 in the backbone. Horizontal flips, scales and crops are used for augmentation. Images are rescaled to have min size 800 and max size 1333. The transformer is trained with dropout of 0.1, and the whole model is trained with grad clip of 0.1.

Evaluation

To evaluate conditional DETR-R50 on COCO val with 8 GPUs run:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env \
    main.py \
    --batch_size 2 \
    --eval \
    --resume <checkpoint.pth> \
    --coco_path /path/to/coco \
    --output_dir output/<output_path>

Note that numbers vary depending on batch size (number of images) per GPU. Non-DC5 models were trained with batch size 2, and DC5 with 1, so DC5 models show a significant drop in AP if evaluated with more than 1 image per GPU.

License

Conditional DETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citation

@inproceedings{meng2021-CondDETR,
  title       = {Conditional DETR for Fast Training Convergence},
  author      = {Meng, Depu and Chen, Xiaokang and Fan, Zejia and Zeng, Gang and Li, Houqiang and Yuan, Yuhui and Sun, Lei and Wang, Jingdong},
  booktitle   = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year        = {2021}
}
Owner
Attention for Vision and Visualization
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
JugLab 33 Dec 30, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023