⬛ Python Individual Conditional Expectation Plot Toolbox

Overview

PyCEbox

Python Individual Conditional Expectation Plot Toolbox

Individual conditional expectation plot

A Python implementation of individual conditional expecation plots inspired by R's ICEbox. Individual conditional expectation plots were introduced in Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation (arXiv:1309.6392).

Quickstart

pycebox is available on PyPI and can be installed with pip install pycebox.

The tutorial recreates the first example in the above paper using pycebox.

Development

For easy development and prototyping using IPython notebooks, a Docker environment is included. To run an IPython notebook with access to your development version of pycebox, run PORT=8889 sh ./start_container.sh. A Jupyter notebook server with access to your development version of pycebox should be available at http://localhost:8889/tree.

To run the pycebox's tests in your development container

  1. Access a bash shell on the container with docker exec -it pycebox bash.
  2. Change to the pycebox directory with cd ../pycebox
  3. Run the tests with pytest test/test.py

Documentation

For details of pycebox's API, consult the documentation.

License

This library is distributed under the MIT License.

Comments
  • Typo in ice_plot() regarding _get_quantiles()

    Typo in ice_plot() regarding _get_quantiles()

    There is a typo in the ice_plot() function when calling the _get_quantiles() function. In lines 124 and 137, the ice_plot() calls __get_quantiles() (which is undefined) instead of _get_quantiles(), which results in an error if trying to use quantiles or center the ICE curves.

    opened by savvastj 6
  • Using predicted probabilities for binary classification

    Using predicted probabilities for binary classification

    Is there any way to give some form of predict_proba function to the ice() function in order to see the probability as opposed to the prediction?

    Thanks! Nema

    opened by nemasobhani 1
  • Plot mistake

    Plot mistake

    There is a problem in the visualization part. When I am trying to plot the graph in the example, I see the following mistake:


    TypeError Traceback (most recent call last) in 12 ice_plot(ice_df, frac_to_plot=0.1, 13 color_by='x3', cmap=PuOr, ---> 14 ax=ice_ax); 15 16 ice_ax.set_xlabel('$X_2$');

    C:\ProgramData\Anaconda3\lib\site-packages\pycebox\ice.py in ice_plot(ice_data, frac_to_plot, plot_points, point_kwargs, x_quantile, plot_pdp, centered, centered_quantile, color_by, cmap, ax, pdp_kwargs, **kwargs) 128 if frac_to_plot < 1.: 129 n_cols = ice_data.shape[1] --> 130 icols = np.random.choice(n_cols, size=frac_to_plot * n_cols, replace=False) 131 plot_ice_data = ice_data.iloc[:, icols] 132 else:

    mtrand.pyx in mtrand.RandomState.choice()

    TypeError: 'float' object cannot be interpreted as an integer

    opened by karakol15 4
  • "frac_to_plot" parameter in ice_plot

    Hey Austin,

    This package rocks, thanks for publishing it!

    I have a question and a potential small bug in the ice_plot method, specifically on the "frac_to_plot" parameter.

    It is my understanding that you simply take the fraction and multiply by the number of columns, and then pass this to the "size" parameter of np.random.choice(). I think we should make sure that the number being passed is an integer, not a float. Otherwise np.random.choice() will not accept a float as a parameter for "size".

    Current: icols = np.random.choice(n_cols, size=frac_to_plot * n_cols, replace=False)

    Fix: icols = np.random.choice(n_cols, size=int(frac_to_plot * n_cols), replace=False)

    Best, Andrew

    opened by andrew-cho 1
  • Extended use to classification models, fixed typecast bug

    Extended use to classification models, fixed typecast bug

    • Extended use to classification models by allowing predict_proba to be passed to the ice_plot function.
    • Fixed 'type error when size is non-int' error for np.random.choice function
    opened by sanjifr3 0
  • Averaging ICE plots across multiple runs/folds of a model

    Averaging ICE plots across multiple runs/folds of a model

    Hi Austin,

    I was wondering if it is possible to average across multiple runs/folds of the same model.

    I am trying at the moment, but the resulting ICE plots do not make sense. The per run plots make sense but when I average them across both runs and folds the data gets screwed.

    Cheers,

    Dan

    opened by danieltudosiu 0
Releases(0.0.1)
Owner
Austin Rochford
Chief Data Scientist @ Kibo Commerce, recovering mathematician, enthusiastic Bayesian
Austin Rochford
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 20.9k Dec 28, 2022
A collection of infrastructure and tools for research in neural network interpretability.

Lucid Lucid is a collection of infrastructure and tools for research in neural network interpretability. We're not currently supporting tensorflow 2!

4.5k Jan 07, 2023
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" 🧠 (ICLR 2019)

Hierarchical neural-net interpretations (ACD) 🧠 Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic

Chandan Singh 111 Jan 03, 2023
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.3k Jan 08, 2023
Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve is a Python package for analyzing the inference dynamics of your PyTorch model.

Delve 73 Dec 12, 2022
Convolutional neural network visualization techniques implemented in PyTorch.

This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.

1 Nov 06, 2021
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 187 Dec 27, 2022
GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

GNNLens2 is an interactive visualization tool for graph neural networks (GNN).

Distributed (Deep) Machine Learning Community 143 Jan 07, 2023
A library that implements fairness-aware machine learning algorithms

Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M

Niels Bantilan 105 Dec 30, 2022
⬛ Python Individual Conditional Expectation Plot Toolbox

⬛ PyCEbox Python Individual Conditional Expectation Plot Toolbox A Python implementation of individual conditional expecation plots inspired by R's IC

Austin Rochford 140 Dec 30, 2022
Pytorch implementation of convolutional neural network visualization techniques

Convolutional Neural Network Visualizations This repository contains a number of convolutional neural network visualization techniques implemented in

Utku Ozbulak 7k Jan 03, 2023
🎆 A visualization of the CapsNet layers to better understand how it works

CapsNet-Visualization For more information on capsule networks check out my Medium articles here and here. Setup Use pip to install the required pytho

Nick Bourdakos 387 Dec 06, 2022
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"

Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published

Kim Heecheol 262 Dec 04, 2022
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees · Site · Paper · Blog · Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022
An Empirical Review of Optimization Techniques for Quantum Variational Circuits

QVC Optimizer Review Code for the paper "An Empirical Review of Optimization Techniques for Quantum Variational Circuits". Each of the python files ca

Owen Lockwood 5 Jun 28, 2022
A Practical Debugging Tool for Training Deep Neural Networks

Cockpit is a visual and statistical debugger specifically designed for deep learning!

31 Aug 14, 2022