Laporan Proyek Machine Learning - Azhar Rizki Zulma

Overview

Laporan Proyek Machine Learning - Azhar Rizki Zulma

Project Overview

Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hiburan dengan judul proyek "Movie Recommendation System".

Latar Belakang

Hiburan merupakan kebutuhan terbelakang manusia, mengapa demikian? Karena hiburan bukanlah sebuah kebutuhan pokok yang wajib dipenuhi oleh setiap manusia, begitulah pikir orang terdahulu. Seiring berjalannya waktu orang-orang mulai menganggap hiburan merupakan sebuah kebutuhan yang wajib dipenuhi oleh setiap orang. Terutama semenjak memasuki abad 21, di mana terjadi perkembangan yang pesat pada dunia hiburan. Khususnya pada dunia pertelevisian dan film. Dari era televisi hitam putih, hingga menginjak ke era warna-warni. Bahkan mulai bermunculan televisi hologram dan layanan streaming yang disesuaikan dengan kesukaan pengguna. Penggunaan layanan streaming saat ini meningkat cukup pesat. Dan baru-baru ini pun semakin meningkat akibat pandemi yang berkepanjangan ini.

Dari latar belakang itulah penulis mengambil topik ini sebagai domain proyek machine learning yang penulis kerjakan. Selain dari latar belakang diatas, tujuan lain dibuatnya proyek machine learning ini ialah membuat sebuah model untuk proyek aplikasi yang sedang penulis kembangkan. Diharapkan model ini nantinya akan berguna pada aplikasi yang penulis kembangkan dan mendapatkan hasil keluaran berupa aplikasi yang berkualitas sesuai dengan yang penulis harapkan.

Business Understanding

Sistem rekomendasi adalah suatu aplikasi yang digunakan untuk memberikan rekomendasi dalam membuat suatu keputusan yang diinginkan pengguna. Untuk meningkatkan user experience dalam menemukan judul film yang menarik dan yang sesuai dengan yang pengguna inginkan, maka sistem rekomendasi adalah pilihan yang tepat untuk diterapkan. Dengan adanya sistem rekomendasi, user experience tentu akan lebih baik karena pengguna bisa mendapatkan rekomendasi judul film yang ingin diharapkan.

Problem Statement

Berdasarkan pada latar belakang di atas, permasalahan yang dapat diselesaikan pada proyek ini adalah sebagai berikut:

  • Bagaimana cara melakukan pengolahan data yang baik sehingga dapat digunakan untuk membuat model sistem rekomendasi yang baik?
  • Bagaimana cara membangun model machine learning untuk merekomendasikan sebuah film yang mungkin disukai pengguna?

Goal

Tujuan dibuatnya proyek ini adalah sebagai berikut:

  • Melakukan pengolahan data yang baik agar dapat digunakan dalam membangun model sistem rekomendasi yang baik.
  • Membangun model machine learning untuk merekomendasikan sebuah film yang kemungkinan disukai pengguna.

Solution

Untuk menyelesaikan masalah ini, penulis akan menggunakan 2 solusi algoritma yaitu content-based filtering dan collaborative filtering. Berikut adalah penjelasan teknik-teknik yang akan digunakan untuk masalah ini:

  • Content-Based Filtering merupakan cara untuk memberi rekomendasi bedasarkan genre atau fitur pada item yang disukai oleh pengguna. Content-based filtering mempelajari profil minat pengguna baru berdasarkan data dari objek yang telah dinilai pengguna.
  • Collaborative Filtering merupakan cara untuk memberi rekomendasi bedasarkan penilaian komunitas pengguna atau biasa disebut dengan rating. Collaborative filtering tidak memerlukan atribut untuk setiap itemnya seperti pada sistem berbasis konten.

Data Understanding

  • Informasi Dataset
    Dataset yang digunakan pada proyek ini yaitu dataset film lengkap dengan genre dan rating, informasi lebih lanjut mengenai dataset tersebut dapat lihat pada tabel berikut:

    Jenis Keterangan
    Sumber Dataset: Kaggle
    Dataset Owner Sunil Gautam
    Lisensi -
    Kategori Movies & TV Shows
    Usability 5.3
    Jenis dan Ukuran Berkas ZIP (3.3 MB)
    Jumlah File Dataset 4 File (CSV)


    Berikut ini file dataset

    • links.csv
    • ratings.csv
    • movies.csv
    • tags.csv

    Pada proyek ini penulis hanya menggunakan 2 file dataset yaitu:

    1. movies.csv
      Jumlah Data 9742, dan memiliki 3 kolom
      Untuk penjelasan mengenai variabel-variabel pada dataset dapat dilihat pada poin-poin berikut ini:

      • movieId: ID dari film
        movieId memiliki 9742 data unik.
      • title: Judul dari film
        title memiliki 9737 data unik.
      • genres: Genre dari film
        genres memiliki 951 data unik.
    2. ratings.csv
      Jumlah Data 100836, dan memiliki 4 kolom
      Untuk penjelasan mengenai variabel-variabel pada dataset dapat dilihat pada poin-poin berikut ini:

      • userId: ID pengguna pemberi rating
        userId memiliki 610 data unik.
      • movieId: ID film yang di rating
        movieId memiliki 9724 data unik.
      • rating: Rating dari film
        rating memiliki 10 data unik. dengan range 0 - 5 dan skala 0.5
      • timestamp = Waktu rating terekam
        timestamp memiliki 85043 data unik.
  • Sebaran atau Distribusi Data pada Fitur yang Digunakan

    Berikut merupakan visualisasi data yang menunjukkan sebaran/distribusi data pada beberapa variabel yang akan penulis gunakan nanti:

    Distribusi tahun rilis film:

    Distribusi Tahun Rilis

    Dapat dilihat pada grafik di atas rata-rata rilis sebuah film berkisar antara tahun 1990-2000 ke atas, distribusi terbanyak terjadi di atas tahun 2000, di mana distribusi film cenderung mengalami kenaikan secara signifikan setiap berjalannya waktu.

    Distribusi total jumlah genre:

    Distribusi Genre

    Terlihat pada gambar di atas ada 20 kategori atau genre di dalam data ini. genre Drama yang paling banyak dan diikuti oleh genre Comedy lalu ada beberapa film yang tidak memiliki genre no genres listed

    10 film yang memiliki rating tertinggi:

    Top Rating

    Terlihat pada grafik, bahwa film yang memiliki rating tertinggi adalah Forrest Gump yang rilis pada tahun 1994

Data Preparation

Data preparation diperlukan untuk mempersiapkan data agar ketika nanti dilakukan proses pengembangan model diharapkan akurasi model akan semakin baik dan meminimalisir terjadinya bias pada data. Berikut ini merupakan tahapan-tahapan dalam melakukan pra-pemrosesan data:

  • Melakukan Penanganan Missing Value
    Penanganan yang penulis lakukan pada missing value yaitu dengan melakukan drop data. Tetapi karena dataset yang digunakan cukup bersih, missing value hanya terdapat ketika proses penggabungan dataset.

  • Melakukan Sorting Data Rating berdasarkan ID Pengguna
    Melakukan pengurutan data rating berdasarkan ID Pengguna agar mempermudah dalam melakukan penghapusan data duplikat nantinya.

  • Menghapus Data Duplikat
    Melakukan penghapusan data duplikat agar tidak terjadi bias pada data nantinya.

  • Melakukan penggabungan Data
    Melakukan penggabungan data yang sudah diolah sebelumnya untuk membangun model. lalu menghapus data yang memiliki missing value pada variabel genre dan melihat jumlah data setelah digabungkan, terlihat data memiliki 100830 baris dengan 5 kolom.

  • Melakukan Normalisasi Nilai Rating
    Untuk menghasilkan rekomendasi yang sesuai dan akurat maka pada tahap ini diperlukan sebuah normalisasi pada data nilai rating dengan menggunakan formula MinMax pada data rating sebelum memasuki tahap modelling.

  • Melakukan Splitting Dataset
    Untuk melatih model maka penulis perlu melakukan pembagian dataset latih dan juga dataset validasi, untuk dataset latih penulis berikan 80% dari total keseluruhan jumlah data sedangkan dataset validasi sebesar 20% dari keseluruhan data. Hal ini diperlukan untuk pengembangan pada model Collaborative Filtering nantinya.

Modeling and Result

Pada proyek ini, Proses modeling dalam proyek ini menggunakan metode Neural Network dan Cosine Similarity. Model Deep Learning akan penulis gunakan untuk Sistem Rekomendasi berbasis Collaborative Filtering yang mana model ini akan menghasilkan rekomendasi untuk satu pengguna. Cosine Similarity akan penulis gunakan untuk Sistem Rekomendasi berbasis Content-Based Filtering yang akan menghitung kemiripan antara satu film dengan lainnya berdasarkan fitur yang terdapat pada satu film. Berikut penjelasan tahapannya:

Content Based Filtering

Pada modeling Content Based Filtering, langkah pertama yang dilakukan ialah penulis menggunakan TF-IDF Vectorizer untuk menemukan representasi fitur penting dari setiap genre film. Fungsi yang penulis gunakan adalah tfidfvectorizer() dari library sklearn. Selanjutnya penulis melakukan fit dan transformasi ke dalam bentuk matriks. Keluarannya adalah matriks berukuran (9737, 23). Nilai 9737 merupakan ukuran data dan 23 merupakan matriks genre film.

Untuk menghitung derajat kesamaan (similarity degree) antar movie, penulis menggunakan teknik cosine similarity dengan fungsi cosine_similarity dari library sklearn. Berikut dibawah ini adalah rumusnya:

Rumus Cosine Similarity

Langkah selanjutnya yaitu menggunakan argpartition untuk mengambil sejumlah nilai k tertinggi dari similarity data kemudian mengambil data dari bobot (tingkat kesamaan) tertinggi ke terendah. Kemudian menguji akurasi dari sistem rekomendasi ini untuk menemukan rekomendasi movies yang mirip dari film yang ingin dicari.

  • Kelebihan

    • Semakin banyak informasi yang diberikan pengguna, semakin baik akurasi sistem rekomendasi.
  • Kekurangan

    • Hanya dapat digunakan untuk fitur yang sesuai, seperti film, dan buku.
    • Tidak mampu menentukan profil dari user baru.

Berikut ini adalah konten yang dijadikan referensi untuk menentukan 10 rekomendasi film tertinggi yang memiliki kesamaan genre yang sama:

Content Based Filtering Data Uji

Terlihat pada tabel diatas bahwasannya saya akan menguji coba model berdasarkan judul film "Daddy Day Care (2003)" dengan genre Children & Comedy.

Berikut ini adalah hasil rekomendasi tertinggi dari model Content Based Filtering berdasarkan referensi film diatas:

Content Based Filtering

Collaborative Filtering

Pada modeling Collaborative Filtering penulis menggunakan data hasil gabungan dari dua datasets yaitu movies.csv & ratings.csv. Langkah pertama adalah melakukan encode data userId & movieId setelah di encode lakukan mapping ke dalam data yang digunakan dan juga mengubah nilai rating menjadi float. Selanjutnya ialah membagi data untuk training sebesar 80% dan validasi sebesar 20%.

Lakukan proses embedding terhadap data film dan pengguna. Lalu lakukan operasi perkalian dot product antara embedding pengguna dan film. Selain itu, penulis juga menambahkan bias untuk setiap pengguna dan film. Skor kecocokan ditetapkan dalam skala [0,1] dengan fungsi aktivasi sigmoid. Untuk mendapatkan rekomendasi film, penulis mengambil sampel user secara acak dan mendefinisikan variabel movie_not_watched yang merupakan daftar film yang belum pernah ditonton oleh pengguna.

  • Kelebihan

    • Tidak memerlukan atribut untuk setiap itemnya.
    • Dapat membuat rekomendasi tanpa harus selalu menggunakan dataset yang lengkap.
    • Unggul dari segi kecepatan dan skalabilitas.
    • Rekomendasi tetap akan berkerja dalam keadaan dimana konten sulit dianalisi sekalipun
  • Kekurangan

    • Membutuhkan parameter rating, sehingga jika ada item baru sistem tidak akan merekomendasikan item tersebut.

Berikut ini adalah hasil rekomendasi film tertinggi terhadap user 606:

Content Based Filtering

Evaluation

Evaluasi yang akan penulis lakukan disini yaitu evaluasi dengan Mean Absolute Error (MAE) dan Root Mean Squared Error (RMSE) pada Collaborative Filtering dan Precision Content Based Filtering

Content Based Filtering

Pada evaluasi model ini penulis menggunakan metrik precision content based filtering untuk menghitung precision model sistem telah dibuat sebelumnya. Berikut ini adalah hasil analisisnya:

Precision Metric Formula:

Precision Formula

Precision Metric Test:

Precision Content Based Filtering

Langkah pertama adalah melakukan pengecekan data film berdasarkan title. Dapat dilihat bahwa judul film Outbreak (1995) memiliki 4 genre yaitu Action, Drama, Sci-Fi, dan Thriller. Lalu dari hasil rekomendasi di atas, diketahui bahwa Outbreak (1995) memiliki 4 genre. Dari 10 item yang direkomendasikan, 8 item memiliki kategori 4 genre yang sama (similar). Artinya, precision sistem kita sebesar 8/10 atau sebesar 80%.

Collaborative Filtering

Mean Absolute Error (MAE) Root Mean Squared Error (RMSE)
Mengukur besarnya rata-rata kesalahan dalam serangkaian prediksi yang sudah dilatih kepada data yang akan dites, tanpa mempertimbangkan arahnya. Semakin rendah nilai MAE (Mean Absolute Error) maka semakin baik dan akurat model yang dibuat. Adalah aturan penilaian kuadrat yang juga mengukur besarnya rata-rata kesalahan. Sama seperti MAE, semakin rendahnya nilai root mean square error juga menandakan semakin baik model tersebut dalam melakukan prediksi.
Formula Mean Absolute Error (MAE) Formula Root Mean Squared Error (RMSE)
MAE RMSE
Visualisasi Mean Absolute Error (MAE) Visualisasi Root Mean Squared Error (RMSE)
Plot MAE Plot RMSE
Berdasarkan hasil fitting nilai konvergen metrik MAE berada sedikit dibawah 0.135 untuk training dan sedikit diatas 0.1450 untuk validasi. Berdasarkan hasil fitting nilai konvergen metrik RMSE berada sedikit diatas 0.170 untuk training dan sedikit dibawah 0.190 untuk validasi.

Untuk menghasilkan nilai yang konvergen proses fitting memerlukan 15 epoch. Dari hasil perhitungan kedua metrik diatas dapat disimpulkan bahwa model ini memiliki tingkat eror di bawah 20%.

Owner
Azhar Rizki Zulma
📈Data Scientist ⚡Developer 🛒Publisher
Azhar Rizki Zulma
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022