Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Related tags

Deep LearningQcover
Overview
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences (BAQIS). Qcover supports fast output of optimal parameters in shallow QAOA circuits. It can be used as a powerful tool to assist NISQ processor to demonstrate application-level quantum advantages.

Getting started

Use the following command to complete the installation of Qcover

pip install Qcover

or

git clone https://github.com/BAQIS-Quantum/Qcover
pip install -r requirements.yml
python setup.py install

More example codes and tutorials can be found in the tests folder here on GitHub.

Examples

  1. Using algorithm core module to generate the ising random weighted graph and calculate it's Hamiltonian expectation
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQulacs
    from Qcover.optimizers import COBYLA
    
    node_num, edge_num = 6, 9
    p = 1
    nodes, edges = Qcover.generate_graph_data(node_num, edge_num)
    g = Qcover.generate_weighted_graph(nodes, edges)
    qulacs_bc = CircuitByQulacs()
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(g, p=p, optimizer=optc, backend=qulacs_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  2. Solving specific binary combinatorial optimization problems, Calculating the expectation value of the Hamiltonian of the circuit which corresponding to the problem. for example, if you want to using Qcover to solve a max-cut problem, just coding below:
    import numpy as np
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQiskit
    from Qcover.optimizers import COBYLA
    from Qcover.applications.max_cut import MaxCut
    node_num, degree = 6, 3
    p = 1
    mxt = MaxCut(node_num=node_num, node_degree=degree)
    ising_g = mxt.run()
    qiskit_bc = CircuitByQiskit(expectation_calc_method="statevector")
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=qiskit_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  3. If you want to customize the Ising weight graph model and calculate the ground state expectation with Qcover, you can use the following code
    import numpy as np
    import networkx as nx
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByTensor
    from Qcover.optimizers import COBYLA
    
    ising_g = nx.Graph()
    nodes = [(0, 3), (1, 2), (2, 1), (3, 1)]
    edges = [(0, 1, 1), (0, 2, 1), (3, 1, 2), (2, 3, 3)]
    for nd in nodes:
       u, w = nd[0], nd[1]
       ising_g.add_node(int(u), weight=int(w))
    for ed in edges:
        u, v, w = ed[0], ed[1], ed[2]
    ising_g.add_edge(int(u), int(v), weight=int(w))
    
    p = 2
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    ts_bc = CircuitByTensor()
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=ts_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()

How to contribute

For information on how to contribute, please send an e-mail to members of developer of this project.

Please cite

When using Qcover for research projects, please cite

  • Wei-Feng Zhuang, Ya-Nan Pu, Hong-Ze Xu, Xudan Chai, Yanwu Gu, Yunheng Ma, Shahid Qamar, Chen Qian, Peng Qian, Xiao Xiao, Meng-Jun Hu, and Done E. Liu, "Efficient Classical Computation of Quantum Mean Value for Shallow QAOA Circuits", arXiv:2112.11151 (2021).

Authors

The first release of Qcover was developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences.

Qcover is constantly growing and many other people have already contributed to it in the meantime.

License

Qcover is released under the Apache 2 license.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022