Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Related tags

Deep LearningQcover
Overview
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences (BAQIS). Qcover supports fast output of optimal parameters in shallow QAOA circuits. It can be used as a powerful tool to assist NISQ processor to demonstrate application-level quantum advantages.

Getting started

Use the following command to complete the installation of Qcover

pip install Qcover

or

git clone https://github.com/BAQIS-Quantum/Qcover
pip install -r requirements.yml
python setup.py install

More example codes and tutorials can be found in the tests folder here on GitHub.

Examples

  1. Using algorithm core module to generate the ising random weighted graph and calculate it's Hamiltonian expectation
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQulacs
    from Qcover.optimizers import COBYLA
    
    node_num, edge_num = 6, 9
    p = 1
    nodes, edges = Qcover.generate_graph_data(node_num, edge_num)
    g = Qcover.generate_weighted_graph(nodes, edges)
    qulacs_bc = CircuitByQulacs()
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(g, p=p, optimizer=optc, backend=qulacs_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  2. Solving specific binary combinatorial optimization problems, Calculating the expectation value of the Hamiltonian of the circuit which corresponding to the problem. for example, if you want to using Qcover to solve a max-cut problem, just coding below:
    import numpy as np
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByQiskit
    from Qcover.optimizers import COBYLA
    from Qcover.applications.max_cut import MaxCut
    node_num, degree = 6, 3
    p = 1
    mxt = MaxCut(node_num=node_num, node_degree=degree)
    ising_g = mxt.run()
    qiskit_bc = CircuitByQiskit(expectation_calc_method="statevector")
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=qiskit_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()
  3. If you want to customize the Ising weight graph model and calculate the ground state expectation with Qcover, you can use the following code
    import numpy as np
    import networkx as nx
    from Qcover.core import Qcover
    from Qcover.backends import CircuitByTensor
    from Qcover.optimizers import COBYLA
    
    ising_g = nx.Graph()
    nodes = [(0, 3), (1, 2), (2, 1), (3, 1)]
    edges = [(0, 1, 1), (0, 2, 1), (3, 1, 2), (2, 3, 3)]
    for nd in nodes:
       u, w = nd[0], nd[1]
       ising_g.add_node(int(u), weight=int(w))
    for ed in edges:
        u, v, w = ed[0], ed[1], ed[2]
    ising_g.add_edge(int(u), int(v), weight=int(w))
    
    p = 2
    optc = COBYLA(options={'tol': 1e-3, 'disp': True})
    ts_bc = CircuitByTensor()
    qc = Qcover(ising_g, p=p, optimizer=optc, backend=ts_bc)
    res = qc.run()
    print("the result of problem is:\n", res)
    qc.backend.visualization()

How to contribute

For information on how to contribute, please send an e-mail to members of developer of this project.

Please cite

When using Qcover for research projects, please cite

  • Wei-Feng Zhuang, Ya-Nan Pu, Hong-Ze Xu, Xudan Chai, Yanwu Gu, Yunheng Ma, Shahid Qamar, Chen Qian, Peng Qian, Xiao Xiao, Meng-Jun Hu, and Done E. Liu, "Efficient Classical Computation of Quantum Mean Value for Shallow QAOA Circuits", arXiv:2112.11151 (2021).

Authors

The first release of Qcover was developed by the quantum operating system team in Beijing Academy of Quantum Information Sciences.

Qcover is constantly growing and many other people have already contributed to it in the meantime.

License

Qcover is released under the Apache 2 license.

Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022